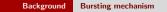
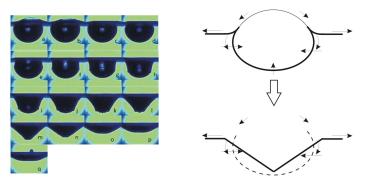


<ロト <回 > < 注 > < 注 > … 注

Krishnan et al. (IITM)

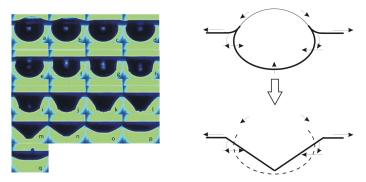

Jetting from bubble collapse


Scaling of jetting from bubble collapse at a liquid surface

Sangeeth Krishnan, Emil J. Hopfinger* and Baburaj A. Puthenveettil

Fluid Mechanics Laboratory Dept. of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India 600036.

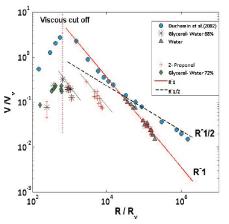
*LEGI-CNRS-UJF, Grenoble, France.


(a) Bursting sequence of 2.15mm air bubble in water (b) Schematic of the collapse motions

æ

▶ < ∃ >

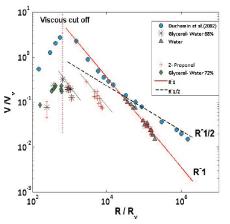
Image: A matrix and a matrix



(a) Bursting sequence of 2.15mm air bubble in water (b) Schematic of the collapse motions

Main processes: (a) film retraction (b) propagation & expansion of kink along cavity surface

Kris	hnan	et al	. (IITM	١.

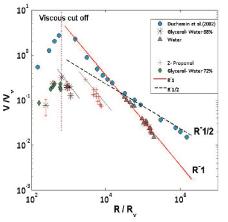

Viscous-Capillary scaling (Duchemin et al. , POF, 14(9), 2002)

•
$$R_{\nu} = \rho \nu^2 / \sigma, \ V_{\nu} = \sigma / \rho \nu,$$

• $V / V_{\nu} = Ca = \mu U_j / \sigma,$
• $R / R_{\nu} = 1 / Oh^2$

where, $Oh = \mu / \sqrt{\sigma \rho R}$

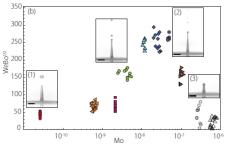
< ロ > < 同 > < 回 > < 回 >


э

Viscous-Capillary scaling (Duchemin et al. , POF, 14(9), 2002)

- $R_{\nu} = \rho \nu^2 / \sigma$, $V_{\nu} = \sigma / \rho \nu$, • $V / V_{\nu} = Ca = \mu U_j / \sigma$, • $R / R_{\nu} = 1 / Oh^2$ where, $Oh = \mu / \sqrt{\sigma \rho R}$
- Data of different fluids do not collapse ⇒ scaling not complete
- For $R/R_{\nu} > 10^4$, discrepancy between experiments and simulation, possibly due to gravity effects.

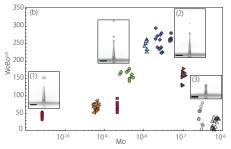
< ロ > < 同 > < 回 > < 回 >


Viscous-Capillary scaling (Duchemin et al. , POF, 14(9), 2002)

- $R_{\nu} = \rho \nu^2 / \sigma$, $V_{\nu} = \sigma / \rho \nu$, • $V / V_{\nu} = Ca = \mu U_j / \sigma$, • $R / R_{\nu} = 1 / Oh^2$ where, $Oh = \mu / \sqrt{\sigma \rho R}$
- Data of different fluids do not collapse ⇒ scaling not complete
- For $R/R_{\nu} > 10^4$, discrepancy between experiments and simulation, possibly due to gravity effects.

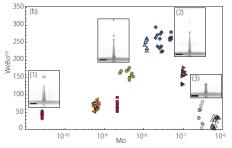
< ロ > < 同 > < 回 > < 回 >

Capillary-viscous scaling incomplete.


Krishnan et al. (IITM)

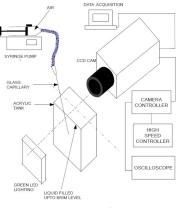
Gravity-capillary-viscous scaling (Gabache et al. , POF, 26(12), 2014)

- We = $\rho U_j^2 R / \sigma$, Bo = $\rho g R^2 / \sigma$,
- $Mo = Oh^4 Bo$
- Proposes
 - low viscosity regime where $We \sim 1/\sqrt{Bo}$
 - 2 two other regimes with log dependence of $We\sqrt{Bo}$ on *Mo*.



Gravity-capillary-viscous scaling (Gabache et al. , POF, 26(12), 2014)

- We = $\rho U_j^2 R / \sigma$, Bo = $\rho g R^2 / \sigma$,
- $Mo = Oh^4Bo$
- Proposes
 - 1 low viscosity regime where $We \sim 1/\sqrt{Bo}$
 - 2 two other regimes with log dependence of $We\sqrt{Bo}$ on Mo.
- Collapse of data not so satisfactory
- Mo values are extremely small

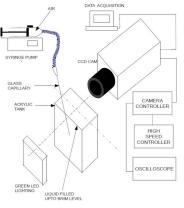


Gravity-capillary-viscous scaling (Gabache et al. , POF, 26(12), 2014)

- We = $\rho U_j^2 R / \sigma$, Bo = $\rho g R^2 / \sigma$,
- $Mo = Oh^4 Bo$
- Proposes
 - low viscosity regime where $We \sim 1/\sqrt{Bo}$
 - 2 two other regimes with log dependence of $We\sqrt{Bo}$ on Mo.
- Collapse of data not so satisfactory
- Mo values are extremely small

-∢ ≣ →

Gravity-capillary-viscous scaling needs to be improved

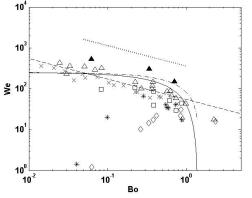


Experimental Setup

Krishnan et al. (IITM)

æ

・ロト ・回ト ・ヨト ・ヨト

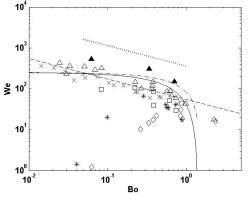


Experimental Setup

- Experiments with water, Glycerine-water 48% (GW48) , GW55, GW68 and GW72
- 0.4 mm < R < 4.08 mm, 0.025 < Bo < 2.36,
- 14 < Re < 4276, 0.002 < Oh < 0.08

э

- 4 同 6 4 日 6 4 日 6



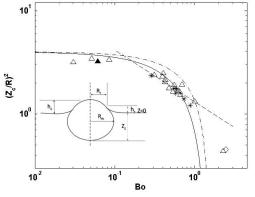
 \triangle , Water; \blacktriangle , GW48; \Box , GW55; *, GW68; \Diamond , GW72; \times , Gabache et al (water).

--,
$$We = 55Bo^{-1/2}$$
;
-.-, $We = 62.5 (Z_c/R)^2$;
--, $We = 62.5 (Z_{cd}/R)^2$.

Dimensionless jet velocity vs Bo.

- ullet Data deviates from $\mathit{We} \sim 1/\sqrt{\mathit{Bo}}$ at low and large Bo
- Low Bo : We becomes independent of Bo
- Large Bo : We reduces fast
- Viscosity causes vertical shift of We vs Bo curve.

 \triangle , Water; \blacktriangle , GW48; \Box , GW55; *, GW68; \Diamond , GW72; \times , Gabache et al (water).

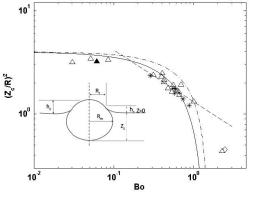

--,
$$We = 55Bo^{-1/2}$$
;
-.-, $We = 62.5 (Z_c/R)^2$;
--, $We = 62.5 (Z_{cd}/R)^2$

Dimensionless jet velocity vs Bo.

- ullet Data deviates from $\mathit{We} \sim 1/\sqrt{\mathit{Bo}}$ at low and large Bo
- Low Bo : We becomes independent of Bo
- Large Bo : We reduces fast
- Viscosity causes vertical shift of We vs Bo curve.

No power law dependency of We on Bo.

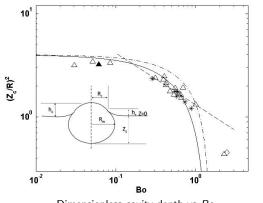
Krishnan et al. (IITM)



Dimensionless cavity depth vs Bo.

--,
$$1.32Bo^{1/2}$$
; --, $(Z_c/R)^2$;
-, $(Z_{cd}/R)^2$

Krishnan et al. (IITM)


문 🛌 문

Dimensionless cavity depth vs Bo.

--,
$$1.32Bo^{1/2}$$
; -.-, $(Z_c/R)^2$;
--, $(Z_{cd}/R)^2$

Functional form of $(Zcd/R)^2$ vs *Bo* and *We* vs *Bo* is the same.

 $\bigtriangleup,$ Water; A, GW48; * , GW68; , GW72.

--,
$$1.32Bo^{1/2}$$
; --, $(Z_c/R)^2$;
-, $(Z_{cd}/R)^2$

Functional form of $(Zcd/R)^2$ vs *Bo* and *We* vs *Bo* is the same.

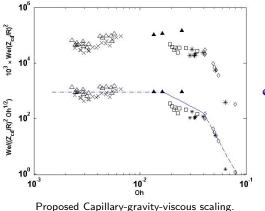
Dimensionless cavity depth vs Bo.


From geometry and static force balance,

• $(Z_c/R)^2 = 4(1 - (2/3)Bo)$, neglecting bubble deformation for Bo < 1.

Including deformation into an ellipse

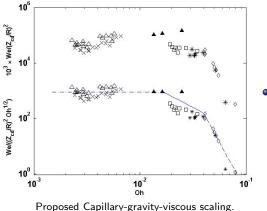
•
$$(Z_{cd}/R)^2 = 4(\sqrt{1-(2/3)Bo} - 0.17Bo^{0.8})^2$$
.


Krishnan et al. (IITM)

Proposed Capillary-gravity-viscous scaling.

 \triangle , Water; \blacktriangle , GW48; \Box , GW55; *, GW68; \Diamond , GW72; \times , Gabache et al (water); -.-, $We^* = 900$.

For Oh < 0.013, We/(Z_{cd}/R)² increases with Oh, possibly due to damping of capillary waves.

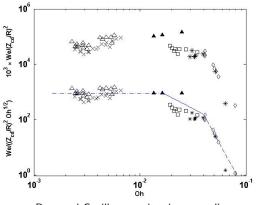


 \triangle , Water; \blacktriangle , GW48; \Box , GW55; *, GW68; \Diamond , GW72; ×, Gabache et al (water); -.-, $We^* = 900$.

For Oh < 0.013, We/(Z_{cd}/R)² increases with Oh, possibly due to damping of capillary waves.

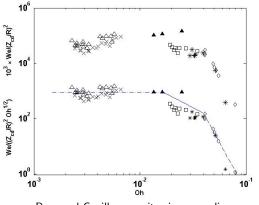
・ロト ・同ト ・ヨト ・ヨト

• Since $\lambda/R < \sqrt{10Oh}$ are damped for any Oh, $We^* = \frac{We}{(Z_{cd}/R)^2\sqrt{Oh}}$ counters this effect


 \triangle , Water; \blacktriangle , GW48; \Box , GW55; *, GW68; \Diamond , GW72; \times , Gabache et al (water); -.-, $We^* = 900$.

For Oh < 0.013, We/(Z_{cd}/R)² increases with Oh, possibly due to damping of capillary waves.

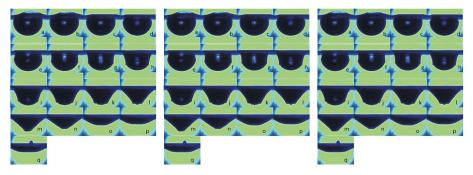
• Since $\lambda/R < \sqrt{10Oh}$ are damped for any Oh, $We^* = \frac{We}{(Z_{cd}/R)^2\sqrt{Oh}}$ counters this effect


For
$$Oh < 0.013$$
, $We^* = 900$

Krishnan et al. (IITM)

Proposed Capillary-gravity-viscous scaling.

- For Oh > 0.036, We* ~ Oh⁻⁷: viscosity affects jet formation & dynamics.
- For 0.013 < Oh < 0.036, a transition regime where jet Re decreases by an order ($Re \sim 100$)

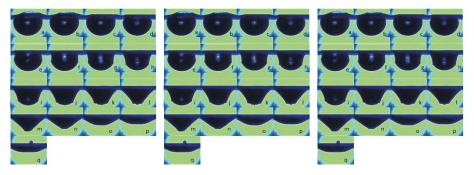


- For Oh > 0.036, $We^* \sim Oh^{-7}$: viscosity affects jet formation & dynamics.
- For 0.013 < Oh < 0.036, a transition regime where jet Re decreases by an order ($Re \sim 100$)

Proposed Capillary-gravity-viscous scaling.

Three regimes of jet velocity scaling

- Oh < 0.013: no viscosity effect, except by capillary wave damping,
- 0.013 < Oh < 0.036: jet *Re* affect *We*,
- Oh > 0.036: viscosity damps jet formation and dynamics, no jetting for Oh > 0.1.
 Krishnan et al. (IITM)
 Jetting from bubble collapse



Bursting sequence in the three regimes

< □ > < 同 >

글 > - < 글 >

э

Bursting sequence in the three regimes

э

- ∢ ≣ →

< A >

- Bo dependence of jet We same as that of $(Zc/R)^2$; no power law dependence of We on Bo;
- Viscosity effects better represented in terms of Oh
- Three regimes demarcated by *Oh* = 0.013 and 0.036 due to viscosity effects.

글 🖌 🖌 글 🛌

- E. J. Hopfinger, for his main contributions
- K. Sangeeth, for experiments and analysis
- N. Santosh, for initial experiments

< A >

- ₹ ₹ ►

- E. J. Hopfinger, for his main contributions
- K. Sangeeth, for experiments and analysis
- N. Santosh, for initial experiments

Thank you for your attention!