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Grenoble experiment

Descamps et al, 2008 
Matas et al., 2011 
Jérôme et al, 2013
Fuster et al, 2013
Ling et al, 2015

and of course Hopfinger, 
Lasheras, Cartellier, 

Villermaux, Hoepffner, 
Popinet, Boeck, Rossi ...  
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1) Is it possible to do a real Direct Numerical Simulation of atomisation, 
resolving all the scales ? 

2) What can we learn from these very detailed simulations ? 

Friday, June 17, 16



/40

1)  2D flows

2)  3D flows
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2D simulations of the planar « Grenoble » setup. 

Gas

Liquid

The Grenoble quasi 2D experiment set up
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where the strain-rate tensor is:

and both fluids are considered incompressible

Navier-Stokes equations with interfaces

Compressible fluids: possible but difficult and less relevant. 
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Treatment of surface tension by Continuous Surface Force
(« CSF » method, Brackbill, Kothe and Zemach JCP 1993)

Many methods for κ . 

Surface tension
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Use Gerris flow solver (S. Popinet) with adaptive oct-tree and quad-tree grids
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Navier-Stokes with variable minimum grid size
according to a subdivision of the computational domain. 

Gas

Liquid

small minimum 
Δx

medium 
minimum  Δx

large minimum 
Δx
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Simulation with a separator plate at density ratio (1/r = 100)

m r Reg Rel Weg Wel M

0.017 0,01 2640 290 19 8 2,4

Movie by Daniel Fuster and Jérôme Hoepffner using the Gerris Flow solver
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Simulation with a separator plate at density ratio (1/r = 100)

m r Reg Rel Weg Wel M

0.017 0,01 2640 290 19 8 2,4

Movie by Daniel Fuster and Jérôme Hoepffner using the Gerris Flow solver
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Compare to experiments in Grenoble (Cartellier, Matas) . Flow from right to left. 
Video with help of Jérôme Hoepffner and Jon Soundar. 
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Compare to experiments in Grenoble (Cartellier, Matas) . Flow from right to left. 
Video with help of Jérôme Hoepffner and Jon Soundar. 
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We need linear theory for spatially developping flows. 

For that, we need to know what are absolute and convective instabilities ! 
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Convective/absolute instabilities

1) Absolute: a spatially localized perturbation at x=0 and t=0
 grows in the entire space

  unstable region

corresponds to a well-defined oscillator frequency in the entire
domain, a so-called « global mode »

time

space
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2) Convective instability: a spatially localized perturbation at t=0
 is convected downstream with the flow

No single frequency is observed but instead, broadband noise is seen. 
The system is seen to be a noise amplifier. Upstream turbulence matters

Convective/absolute instabilities

time

space

unstable region
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Linear theory has an enormous dependence on the wake flow 
correction. 

Wake flow

So what does linear theory say about our problem ? Is it convective or absolute ? 
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Simplified base flows

Friday, June 17, 16



/40

Most important parameter: momentum flux ratio
(or ratio of dynamic pressures) 
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convective, noise amplifier                 ambiguous                   absolute, global mode

Grenoble experiments: Cartellier, Matas, Marty
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Now the ultimate test !  Compare  :

- Experiments
- Numerics

- Linear theory
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Primary instability of sheared interfaces is still a challenge however.

Strong influence of the turbulence level on the measured frequency. 
Figure from Cartellier & Matas (LEGI)
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2) 3D: How do  2D sheets  break into 3D ligaments and droplets ? 
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Dombrowski and Johns  (1983 )
Zhang, Li V., Brunet, P., Eggers, J. & Deegan, R. D.  
2010 

How do  2D sheets  break into 3D ligaments and droplets ? 

Roisman et al (2006) 

1) Cylinder (rim) + Rayleigh-Plateau
instability

2) Hole formation

Two universal mechanisms: 
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Other more specialized mechanisms

for atomization
-  streamline vortices pre-existing in the upstream boundary layers

-  Non-normal instability of two phase mixing layers (Yecko & Zaleski 2005) 
(Squire theorem does not apply in two-phase situation, the non-normal 

instability also leads to streamwise vortices)

-  for splashing

-  Richtmyer-Meshkov instability (Gueyffier & Zaleski 1998)
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What is observed in atomization ? 
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2D waves + attached ligaments formation

Photograph: Alain Cartellier and 
Jean-Philippe Matas

Holes + fishbone patterns

Photograph: Ludovic Raynal
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In fact
a) is also b)

Friday, June 17, 16



/40

Ben Rayana
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Ben Rayana
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Density 
(ρ) 
Kg/m3

Viscosity 
(µ)
Pa-s

Surface 
Tension (σ) 
N/m

Jet Height 
(H) 
mm

Boundary 
Layer (δ) 
mm

Injection 
Velocity (U)
m/s

Gas 50 5E-05
0.05

0.8 0.1 10
Liquid 1000 1E-03

0.05
0.8 0.1 0.5

“A20” simplified case (Stanley Yue Ling) dimensional values 
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“A20” Benchmark: dimensionless values 

• Turbulent gas flow
• Convective instability

Fuster et al. 2013, Otto et 
al. 2013

• "Strong" atomization

M Reg,δ Reg,H Weg,δ r m v

20 1000 8000 10 20 20 20
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Simulation Cases

Cases h(µm) H/h # of cells # of time 
steps

Total 
CPU time 
(hr)

M0 25 32 8.4 Million 4.9E+04 2.5E+03

M1 12.5 64 67 Million 1.0E+05 4.3E+04

M2 6.25 128 537 Million 2.2E+05 5.0E+05

M3 3125 256 4 Billion 4.5E+05 8.0E+06

Domain: Lx=16H, Ly=8H, Lz=2H;  End-Time: t/(H/Ug)=400

CPU time estimate based on performance on TGCC-CURIE machine

Friday, June 17, 16



/40

Statistics

Liquid Volume Fraction
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Statistics

Liquid Volume Fraction
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Sheet and rim formation dynamics

Friday, June 17, 16



/40

Friday, June 17, 16



/40

Friday, June 17, 16



/40

Friday, June 17, 16



/40

Friday, June 17, 16



/40

Interfacial wave interaction
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Ligaments formation due to (a) fingering from the tip of liquid sheet 
and (b) hole formation in the liquid sheet.   The color on the 

interface indicates the streamwise velocity. 
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1) Is it possible to do a real Direct Numerical Simulation of atomisation, 
resolving all the scales ? 

Not yet

2) What can we learn from these very detailed simulations ? 

    How to look at the experiment again 

(mechanisms much more complex than expected).
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This simulation is

- slow
- unstable

- does not parallelize properly
- does not have Lagrangian particles

Challenge: do better. 

Two approaches: 

1)  a much more efficient approach to computing on
octree:  Basilisk by S. Popinet: http://basilisk.fr

2)  or a very simple code on regular grids: Parissimulator by
Scardovelli, Ling, Tryggvason, Zaleski

http://parissimulator.sf.net
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Speed issues
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where the strain-rate tensor D is

Add Lagrangian Point Particles (LPP) that obey a point-particle equation

The force  is determined by the surrounding carrier fluid velocity field 
It reacts on the Navier-Stokes equation through a smoothing Kernel G :
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The choice of resolved interface or LPP modelling depends 
on the type of simulation and on grid resolution
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VOF to LPP conversion  - High Reynolds – CORIA (Berlemont) jet

time
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Total Gas Kinetic Energy

FrequncyTime

-5/3
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Total Liquid Kinetic Energy

Liquid Kinetic EnergyGas Kinetic Energy

-5/3
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Total Interfacial Area

Time Frequency
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Enstrophy

Liquid EnstrophyGas Enstrophy
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Pressure & Interface 
Evolution

19.5 ms

19.6 ms

19.7 ms

19.8 ms

19.9 ms

20.0 ms

20.1 ms

20.2 ms

20.3 ms

20.4 ms

ul uguD

Dimotakis speed
uD=(ul+√rug)/(1+√r)
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Interfacial Wave Evolution

2D Slice of interface from t=19.0-21.9ms

~20°
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Self-Similar Wave
t=19.5-20.4 ms(a) Original scale

(b) x’=(x-x0)/UD(t-t0)

(c) x’=(x-x0)/UD(t-t0)
y’=y/UD(t-t0)

(Hoepffner et al. 2010 PRL)
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Averaging Velocity
m0 m1

m2
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Averaging Interfacial Area
m0 m1

m2
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Turbulence Fluctuations

Top jet bdry
Mixing layer

Low jet dry
Interface
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Energy Spetra

Gas-gas mixing layer Gas-liquid mixing layer

-5/3 -5/3
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Interfacial Instability

m0 m1
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Same as before, higher resolution  (Pascal Ray)
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Same as before, higher resolution  (Pascal Ray)
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Air-Water 
uliq = 0.6 m s−1, ugas = 35 m s−1  

injection diameter D = 7.8 mm

Reg  = 16000, Weg = 200
based on D1

Simulation : Two months on 64 AMD 
processors 

line of eight 5123 boxes – (equivalent 
regular mesh but we use octree adaptation)

Difficult to go to higher levels of refinement

The iconic Marmottant-Villermaux case
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Boundary layer size
157 µm

Injector thickness
comparable. 
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Simulation: Gilles Agbaglah
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Simulation: Gilles Agbaglah
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Simulation: Gilles Agbaglah
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Particle size distributions

experimental and computed
at UPMC

u2 = 35 m / s
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Planar shear flow of Descamps, Matas & Cartellier.  
2nd colloque INCA, 2008. 

Particle trajectories are measured. 

Reδ  = 1000

Simulation 64 x 256 x 512
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Refinement level 1.D/∆x=15.
Spurious currents observed. 

Kinetic energy of the droplet
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Refinement level 1.D/∆x=15.
Spurious currents observed. 

Kinetic energy of the droplet
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Refinement level 2. D/∆x=30. 
Kinetic energy of the droplet

Friday, June 17, 16



/40

Refinement level 2. D/∆x=30. 
Kinetic energy of the droplet
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diameter d=8 mm
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diameter d=8 mm
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- Even for D/∆x = 60 the boundary layer is only covered by 5 cells.
- The boundary layer is very small relative to the droplet diameter.

- Such results suggest that the accurate solution of air flow with water droplets 
can be extremely challenging. 
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Simulation setup

Liquid U

D

Same liquid

gas

h

DROPLET IMPACT
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experiments by Thoroddsen

Friday, June 17, 16



/40

Even higher resolutions, with octree-AMR, up to D/h ~ 6000. 

From Josserand, Ray and 
SZ, ICMF2010

Simulation Pascal Ray
Gerris code

Adapting on curvature  and (less strongly) on vorticity 
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Thoroddsen, Thoraval & others + Gerris, KAUST, Phys. Rev. Lett. (2012)
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Figure 4f
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Figure 4f
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