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Abstract: We present results from numerical simulations which show that the pressure drag of a sub-critical two-layer shallow-water flow, in a rotating frame, around an inclined ridge is
almost independent of the fluid speed for a large range of Rossby numbers. This behavior is observed for barotropic and baroclinic flows approaching the ridge. This result is a counter
example to what is actually believed in geophysical fluid dynamics and employed in parameterizations of topographic effects, which are commonly based on a quadratic drag law. The
behavior is explained by the observation that for larger fluid speeds the fluid crosses the ridge at lower depth leading to a shorter path-length. As the frictional head loss is a product of
the velocity and the path length, both compensate.

Ridges and Pressure Drag

In 1786 Du Buat measured the pressure over the surface of an obstacle in a moving fluid. He observed, that the pressure at the up-flow side exceeds the pressure at the down-flow side.
This pressure difference leads to a pressure drag.
The most prominent physical process considered to discuss oceanic-flow and topography interaction is the Antarctic Circumpolar Current (ACC) and the Reykjanes Ridge but also
smaller scale features as dynamics around ridges in a tidal channel are considered. Recently, the atmospheric flow patterns around a ridge have been investigated to explain the increase
of the summer near-surface temperatures over the northeast coast of the Antarctic Peninsula. Results from numerical and laboratory experiments suggests that a change from blocked
flow around the ridge to flow over the ridge can explain the anomaly strong local warming.
When in fluid dynamics the dependence of the drag on the fluid velocity is considered in analytical calculations or parameterizations of pressure drag the prominent quadratic-drag law is
almost always employed. The law is based on the simple fact the inertia is the product of mass and velocity and that the mass of fluid encountering an obstacle is itself a linear function
of velocity. The law applies also to the frictional forces in a turbulent boundary layer. A large amount of research in all fields of fluid dynamics is dedicated to determining the friction
coefficient, taking the quadratic law for granted. There are however instances where the drag escapes the quadratic law and shows a different behavior. An interesting example is the
drag of flexible objects (plants) in flow, as membrane configurations for which the drag force is almost independent of fluid speed, when it is within a certain range. Other examples of
velocity independent drag are low Reynolds number flow of DNA molecules and objects moving within a granular medium. In our work we will show that the the pressure drag of a
two-layer oceanic flow in a rotating frame that encounters an inclined ridge is another example.

Experiments
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2 layer Shallow Water Equations

∂tu1+ u1∂xu1+ v1∂yu1+g∂xη1− f v1 = ν∇2u1

∂tv1+ u1∂xv1+ v1∂yv1+g∂yη1+ f u1 = ν∇2v1

∂tη1+ ∂x [h1u1]+∂y [h1v1]+∂x [h2u2]+∂y [h2v2] = κ∇2η1

∂tu2+ u2∂xu2+ v2∂yu2+g′′∂xη1+g′∂xη2− f v2 = ν∇2u2

∂tv2+ u2∂xv2+ v2∂yv2+g′′∂yη1+g′∂yη2+ f u2 = ν∇2v2

∂tη2+ ∂x [h2u2]+∂y [h2v2)] = κ∇2η2

exp l1 l2 f (10−4) ν ε Re

e001 0.1 0.1 1. 100. 0.016 40
e002 0.25 .25 1. 100. 0.04 100
e003 0.5 0.5 1. 100. 0.08 200
e004 0.75 .75 1. 100. 0.12 300
e005 1.0 1.0 1. 100. 0.16 400
e006 1.5 1.5 1. 100. 0.24 600
e007 2.0 2.0 1. 100. 0.32 800

e012 0.25 .25 1. 200. 0.04 50
e013 0.5 0.5 1. 200. 0.08 100
e015 1.0 1.0 1. 200. 0.16 200
e017 2.0 2.0 1. 200. 0.32 400

e025 1.0 1.0 1. 50. 0.16 800

e105 1.0 1.0 2. 100. 0.08 400
e205 1.0 1.0 3. 100. 0.0533 400
e305 1.0 1.0 4. 100. 0.04 400

e1001 0.1 0.1 λ 1. 100. 0.032 80
e1002 0.1 0.25 λ 1. 100. 0.056 140
e1003 0.1 0.5 λ 1. 100. 0.096 240
e1005 0.1 1.0 λ 1. 100. 0.176 440
e1006 0.1 1.05 λ 1. 100. 0.184 480

Results: Inertial Dynamics
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Strong fore-aft symmetry, almost time indepen-
dent (faint trapped Poincaré waves).

The flow is almost time independent (faint trapped Poincaré waves above topography). The dynam-
ics is governed by the conservation of potential vorticity (PV) in each layer: ~ui ·∇qi = 0 with qi =
ζi+ f

hi
. And the Bernoulli potential assures the symmetry of stationary flow across a symmetric ridge.

For the low velocity case the Rossby number is small, that is the relative vorticity is small as com-
pared to the Coriolis parameter and the flow flows around the topography in the lower layer. For
higher velocities the relative vorticity becomes more important, it is negative at the tip of the topog-
raphy. To compensate the reduction of total vorticity (ζi + f ) the layer thickness decreases as the
flow crosses the ridge further above the topography. This leads, at the same time, to a decrease of
the relative vorticity as the flow performs a less pronounced bend around the topography. This is
clearly visible in Fig. to the right where the path of the center of the current around the ridge in the
two layers for different Rossby number is shown.

Current Paths

upper layer lower layer
Paths of the center of the current in the upper layer
(left) and the lower layer (right) for ex001 (—), ex002
(· · ·), ex003 (−−−), ex004 (· − ·), ex005 ( − · ·−),
ex006 (·−−·), ex007 (-	-)

Results : Dissipative Processes

Pressure Drag

Db = g
∫

A
(ρ1h1+ρ2h2)∂xbda

= Db1+Db2

Pressure drag as a function of the Rossby
number (ε). Total pressure drag of exp00X (◦)
and exp10X (�) and pressure drag due to the
interface for exp00X () and exp10X (4).

When considering the path of the flow around the ridge we can observe a slight asymmetry
across the ridge, which is proportional to viscosity. It is a measure of the frictional head-loss
across the ridge and is almost proportional to the viscosity value, the velocity (linear friction)
and the path length. As we have seen in the previous section that stronger flow leads to a
shorter path length and so when considering the friction as a function of the Rossby number
we find the pressure drag is, in the case considered here, almost independent of it.
For the experiments with a baroclinic forcing the total pressure drag is almost identical to
the barotropic forcing when plotted as a function of the Rossby number in the lower layer as
shown in the Fig. The pressure drag due to the interface is however five-fold higher but it is
then compensated by a negative pressure drag due to the surface.

Perspectives
The behavior is remarkably robust law as results with a baroclinicly forced flow lead to almost identical results for the total pressure drag. This and the fact that the findings are explained
by the conservation of potential vorticity suggest that our results are more than a curiosity in geophysical fluid dynamics.
Although the configuration is highly idealized we did not find analytical solutions and the results are numerical. The presence of very low amplitude trapped Poincaré waves indicates
that these solutions are probably not readily available. This is common to the field flow topography interaction were analytical solutions are scant even in the most idealized cases.
We further like to mention that the width of the ridge (50km) is smaller than the grid-size of most numerical models used to simulate the ocean dynamics in climate models. The
influence of such a ridge has therefore to be parameterized and the present work questions the validity of the available parameterizations, which are based on a quadratic law.


