Influence of wall roughness and thermal conductivity on turbulent natural convection

P. Orlandi, S.Pirozzoli, & M. Bernardini

Dipartimento di Ingegneria Meccanica e Aerospaziale Università di Roma "La Sapienza"

> supported by MIUR grants computer time CINECA

Natural convection

- Physics of turbulent natural convection studied
- Through theoretical, numerical and laboratory experiments
 - $Nu \approx Ra^n$ several n proposed
 - $E_u \approx k^{-5/3} E_T \approx k^{-4/3}$ inertial range
 - $E_u \approx k^{-11/5} E_T \approx k^{-7/5}$ for $1/k < L_B$
- DNS could validate theory and relate spectra to flow structures
- DNS in cylindrical boxes relay on spectra from time signals

Natural convection with rough surfaces

- Present DNS in a periodic box with conducting rough solid layers
- Fluid for $-1 < x_2 < 1$ $L_1 = L_3 = 4$ $Pr_F = 1$
- Top smooth T_S at $x_2 = 1$
- Bottom −1.5 < x₂ < −1.2 solid</p>
- Roughness $-1.2 < x_2 < -1$ T_R at $x_2 = -1$
- Present H = 2h, $\Delta T = 2\Delta\theta$ $Re = U_0H/2\nu$
- $U_0 = \sqrt{\alpha \Delta T g H/4}$
- Several shapes LSQ, LTB, TTB, CUSH, TTSH compared with CH
- $Pr_S = 0.134$ (copper) conductivity
- Pr_S = 0.0134 ideal high conductivity material
- $(T_R T_S)$ different for each flow
- Rayleigh $Ra = (4Re)^2(T_R T_S)/2$
- Nusselt $(\frac{1}{Re}\frac{\partial T}{\partial y} \langle v'T' \rangle)|_R Re/(T_R T_S)/2$

・ 押 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Thermal profiles

P. Orlandi, S.Pirozzoli, & M. Bernardini (Dipa

1D spectra for v and T at y = 0.05 Re = 1000

P. Orlandi, S.Pirozzoli, & M. Bernardini (Dipa

1D spectra for v and T at centerline Re = 1000

P. Orlandi, S.Pirozzoli, & M. Bernardini (Dipa

1D spectra for v and T at y = 0.05 Re = 3000

P. Orlandi, S.Pirozzoli, & M. Bernardini (Dipa

1D spectra for v and T at centerline Re = 3000

P. Orlandi, S.Pirozzoli, & M. Bernardini (Dipa

Heat flux contribution

æ

イロト イポト イヨト イヨト

Heat flux total

æ

Nu(Ra) effect shape

P. Orlandi, S.Pirozzoli, & M. Bernardini (Dipa

Nu versus Ra

Left Silverton (from Chandrasekar) right Tisserand (2011)
Red Ra^{0.286} green Ra^{0.3} Kerr (1996) Ra^{0.276}

• • • • • • • • • • • • •

Budgets for closures

