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The oceanic circulation of heat and salinity 
are major determinants of long term 
climate and overflows are key component.



Oceanic Overflows 
Mediterranean Outflow

Thermohaline 
circulation

Prenhall/Pearson

WHOI

Sill

Schematic Representation



In-situ measurement is hard



complexity of an oceanic outflow, we can
nevertheless deduce some of the important
elements of outflow dynamics from idealized
examples. A simple but still relevant case is
that of a source of constant buoyancy that
feeds a density current that is descending a
straight (nonrotating), inclined channel.
The current accelerates down the slope
until it reaches a quasi-steady state in which
the pressure gradient along the stream is
balanced by the retarding effect of bottom
stress and entrainment stress.

The importance of the entrainment
stress depends on the internal Froude num-
ber, F = U/'/h (21, 22), where U is the
current speed, g = gAp/po is the reduced
gravity, g is the acceleration of gravity, Ap
is the density difference between the densi-
ty current and the ambient water (the
density anomaly), po is a reference density,
and h is the thickness of the density cur-
rent. The Froude number appears in many
hydraulics problems and has several inter-
pretations, including that it is the ratio of
the current speed to the phase speed of long
internal waves. If F < 1, the density cur-
rent will not mix significantly with the
overlying water. In that case, the retarding
stress that balances the pressure gradient is
mainly bottom stress. If F > 1, the entrain-
ment stress may provide a significant part of
the total stress. In that case, the density
current will entrain the overlying water and
consequently lose some of its density anom-
aly. This suggests that F is a crucial internal
flow parameter of an outflow. Estimating F
in a straightforward way from the CTD and
XCP data, we found that F : 1 in the first
50 to 100 km of the outflow path and is
significantly less over the next 100 km.

To understand why the Froude number of
the outflow might exceed 1, we examined
how the momentum balance changes along
the path in response to variation of external
parameters. The bottom stress on a turbulent
current is often approximated by a quadratic
drag law Tb = POCDU2, where, for ocean
bottoms, CD (1.5 to 3) x 10-3, depend-
ing on the roughness of the terrain and the
height at which U is observed. Under this
approximation, it is easy to show that the
Froude number of a quasi-steady density
current will exceed 1 if dx + h. > CD, where
d, and h. are the along-stream slopes of the
bottom depth and the layer thickness (23).
This suggests that the bottom slope and the
drag coefficient are important external pa-
rameters of a density current.

The terms in the momentum balance can
also be estimated by an analysis of the data.
The bottom and entrainment stresses can be
inferred from models of boundary layer flow.
We used the XCP measurements of the
current in the lowest 5 to 10 m of the bottom
boundary layer to estimate the bottom stress,
Tb, by fitting U(z) to the logarithmic form
(Us/k) log(z/z0), where U. = ('rdpo)1'2 is the
friction velocity, which is to be determined,
k = 0.4 is von Karman's constant, and zo is
the roughness length (24). The estimated
bottom stress is quite large and shows a
systematic variation along the path that is
roughly proportional to the variation of U2:
Tb = 1.5 Pa at sections A and B, has a
maximum of about 2.5 Pa at section C, and
is much less, about 0.3 Pa, at section F.

The XDP measurements of the turbu-
lence intensity were used to estimate the
profile of turbulent kinetic energy dissipa-
tion, e(z). This too can be used to infer

stress, with the assumption of a simplified
energy budget, F,(z) - T(Z) UT, where T(Z) is
the turbulent stress and U, is the vertical
shear of the horizontal current, which can
be readily estimated from XCP data (25).
We used this method to estimate the ratio
of the turbulent stress in the interfacial
layer, Te, to the bottom boundary layer
stress, F = TYTb, and found that the mean
value over 29 samples, distributed mainly
between sections A and D, is F = 0.4 +
0.2, where the uncertainty is twice the
standard error. Thus the bottom stress ap-
pears to exceed the entrainment stress by
about a factor of 2 over that portion of the
outflow path. There appears to be a spatial
variation of F within this region, although
the small number of samples together with
the large variance of F render this somewhat
tenuous. The mean (and median) at sections
A and B is F = 0.3 + 0.1 (0.2) (n = 9);
there appears to be a maximum at section C,
where F= 0.9 -+- 0.5 (0.6) (n = 11), and a
small decrease at section D, where F = 0.6
+ 0.6 (0.4) (n = 6). The number of XDP
samples from sections E and F is inadequate
to yield a stable mean of F, but inspection of
the dissipation profiles suggests that F may
decrease further to the west.

The pressure gradient averaged over the
outflow layer can be written as P, =
g[(Aph)x + ApdJ, where d is the bottom
depth and the derivative, indicated by the
subscript x, is taken along the direction of
the outflow. The first term represents the
internal (baroclinic) pressure gradient,
which arises from variations in density or
layer thickness along the outflow path. This
term is dominant within the Strait of
Gibraltar proper and drives the two-layer
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Fig. 4. A profile of current and salinity as in Fig.
3 and a profile of dissipation from an expand-
able dissipation profiler (XDP) (right panel).
These data are from a typical station along the
outflow axis at section C. Dissipation was ex-
tremely high in the saline outflow layer, of order
1 -2 W m-3, and was about a factor of 104 less
in the inflowing Atlantic water above.
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E D C B A Fig. 5. (A) Volume transport across
each of the sections shown as a
function of depth. The outflow wa-
ter is blackened. (B) Volume trans-
port shown as a function of density
(we use density rather than salinity
because density is monotonically
increasing with depth, while salini-
ty has a local minimum in the At-
lantic water just above the outflow
layer). Note the large change in the

- -F-i--'F~i~ -F-F- 'F-~ -~',, transport profile as a function of
density between sections B and E.
This is evidence of entrainment by
the outflow of North Atlantic Centralii%T i water from the density range c. =
27.0 to 27.2 kg m-3.
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Boundary Current Turbulent - top fluid much less turbulent 
(Mediterranean outflow - Price et al Science 1993)

Boundary
current

Quiescent fluid

εc /εT ≈ 1000

Re ~ 106

Rib ~ 1-2



Experimental Apparatus

Simultaneous PIV & PLIF ⇒ 

Velocity & Density 

Odier, Chen, Rivera, Ecke: PRL (2009) & JFM (2014)

Laser 
Illumination

1 2 3

U

denser fluid

lighter
 fluid



High Reynolds number inside current                  
Re ~ 3000; Rλ ~ 100; Reb =ε/(νN2)~ 100

Vary Ri through :                                          
current velocity U: {U0 and U0/2}                     
density contrast ∆ρ: {∆ρ0 and 2∆ρ0}  

                    

Simultaneous measurement of velocity and density 
fields {u,w}(x,y) ρ(x,z) - ‹u’w’›, ‹ρ‘w’›, ε

Sc = ν/D ~ 700  (ScT ~ 1)

Experimental Properties

0.25 < Rib < 1 Rib =
g�⇢H

⇢U2
0



δρ/ρ~ 
0.0026

U ~ 8 cm/s U ~ 5 cm/s

δρ/ρ~ 
0.0052

Rib =  0.63

Rib =  1.02

Rib =  0.26

Rib =  0.52



How do we average quantities around a 
meandering interface ? 

Characterizing overturning → Thorpe 
displacements and Thorpe length LT.

Focus on intermittency and a measure of 
overturning as flow becomes more stable: Ri ~ 1 

Universal distribution of LT gives insight into 
nature of overturning and instability.

Outline



Stratified Shear Flow w/ Turbulent Current

Boundary
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Figure 13: Gradient Richardson number vertical profiles for different x. The thick line is where I do the average in z for
the plot below.
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Figure 14: Vertically averaged gradient Richardson number for different x.
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Rib =  0.63

Rib =  1.02

downstream

Rib =  0.26

Rib =  0.52

Which Ri?  What average does one take?

Rib =
g�⇢H

⇢U2
0

Rig =
gh@⇢/@zi
⇢h@U/@zi2

Ric=1/4

Ric=1/4



Most Stable Rib ~ 1

Intermittent fraction of unperturbed 
interface high; averaging questionable?

‹ρ› ensemble average at a point
Fluctuating position of 

unperturbed interface zi(x,t)

z = z-zi(x,t)~

z~



Divide into perturbed (overturning) and 
unperturbed interface using the Thorpe length LT

Thorpe, S. A., JFM 1977 & The Turbulent Ocean (2005)
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Divide into perturbed (overturning) and 
unperturbed interface using the Thorpe length LT

Thorpe, S. A., JFM 1977 & The Turbulent Ocean (2005)
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Divide into perturbed (overturning) and 
unperturbed interface using the Thorpe length LT

Thorpe, S. A., JFM 1977 & The Turbulent Ocean (2005)
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Divide into perturbed (overturning) and 
unperturbed interface using the Thorpe length LT

Thorpe, S. A., JFM 1977 & The Turbulent Ocean (2005)
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Thorpe Length Distribution

LT* = (LT-‹LT›)/σLT

LT* ≈ 20

Origin of Exponential Scaling of Tails?
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It takes kinetic energy to overcome potential energy barrier
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K* = (K-Kc)/σK

K* ≈ 60

Turbulent Kinetic Energy Distribution
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•Laboratory experiments give detailed insight into the 
instability mechanisms of stratified shear flows.

•An analysis of density overturning using the Thorpe 
length reveals universal features of turbulent mixing in 
stratified shear flows.  

•These insights may help characterize real overflows and 
understand their mechanisms for mixing.

•Use Thorpe length to define overturning disturbance: 
Local length scales - LE, Lo, Ls   Also examine relationship 
with available Potential Energy ....

Take home message
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Figure 1. Close-up image of the interface between two layers. The upper fresh layer is
moving to the right, and lower saline layer is moving to the left. The upward-pointing cusp
is a positive, rightward-propagating Holmboe instability, and the downward-pointing cusp
is a negative, leftward-propagating Holmboe instability. The colour varies from blue to red,
marking high to low fluorescence of the dye. The decrease in fluorescence below the interface is
caused by the dissipation of light. To generate particle streaks the shutter speed of the camera
was set to 0.5 s.

Holmboe (1962) analysed the stability of a sharp density interface subjected to shear.
He predicted that when stratification is strong enough to suppress the KH instability,
two wavetrains develop that travel with equal and opposite phase speeds with respect
to the mean flow. An example of Holmboe’s instability from the present experiments
is shown in figure 1. The potential importance of Holmboe instabilities was recently
highlighted by the direct numerical simulations of Smyth & Winters (2003), who
found that although Holmboe instabilities grow less rapidly than KH instabilities, the
total amount of mixing can be greater (see also Smyth 2006; Carpenter, Lawrence &
Smyth 2007; Smyth, Carpenter & Lawrence 2007). Note that while Holmboe (1962)
assumed a density step, Alexakis (2005) has shown that Holmboe instabilities can
occur, if the thickness of the velocity interface is more than double the thickness
of the density interface. Holmboe instabilities are thought to occur in natural flows
such as the exchange flow through the Strait of Gibraltar (Farmer & Armi 1998) and
salinity intrusions in strongly stratified estuaries (Yoshida et al. 1998; Tedford et al.
2009).

Several techniques have been used to study Holmboe instabilities in the laboratory.
In the splitter-plate experiments of Koop & Browand (1979) and Lawrence, Browand
& Redekopp (1991) only one of the two modes predicted by Holmboe appeared.

360 E. J. Strang and H. J. S. Fernando

(a) (b)

(c) (d )

(e) ( f )

(g) (h)

Figure 3. Entrainment mechanisms: (a) K-H billows, RiB = 1.8 and Rig = 0.12; (b) K-H billows,
RiB = 3.2 and Rig = 0.36; (c) convoluted interface with mixed K-H billowing and wave breaking
activity, RiB = 4.5 and Rig = 0.83; (d) wave distortion by shear, RiB = 5.5 and Rig = 1.21;
(e) shortly after (d) whence the wave crest continues to distort, RiB = 5.5 and Rig = 1.21; (f) wave
breaking event, RiB = 5.8 and Rig = 1.78; (g) symmetric Hölmböe waves, RiB = 9.2 and Rig = 2.82;
(h) Hölmböe waves, RiB = 9.2 and Rig = 2.82.

e ' 0.2) and RiB = 3.2 (Rig = 0.36, Ris = 0.35, e ' 0.11). The overturning structure
as well as their approximately zero phase speed relative to the centre of the shear
layer suggest their similarity to K-H instabilities. This is further corroborated by the
measurements of the Thorpe length scales LT rms (Thorpe 1977) within the billows, in
that, along a line passing through the centre of the billows, the ratio of LT rms to the
maximum Thorpe scale LTmax is 0.567. This agrees well with the measurements of De
Silva et al. (1996) made in tilting tank experiments who found LT rms/LTmax = 0.576

Strang & Fernando JFM 2001

Tedford, Pieters & Lawrence JFM 
2009

Kelvin-Helmholtz Instability - Small Ri

Holmboe Instability - Large Ri

“Scouring”:  Woods, Caulfield, Landel & Kuesters JFM 2010



δρ/ρ  = 0.0026 U = 7 cm/s

0 7 x [cm]6 15 15 22

SDSV
Rig = 0.06 Rig = 0.11 Rig = 0.17



Center for 
Nonlinear Studies

δρ/ρ  = 0.0026 U = 4.5 cm/s

0 7 x [cm]6 15 15 22

SDHV

Rig = 0.28 Rig = 0.33 Rig = 0.45



δρ/ρ  = 0.0052 U = 7 cm/s

0 7 x [cm]6 15 15 22

DDSV
Rig = 0.18 Rig = 0.22 Rig = 0.29



δρ/ρ  =  0.0052 U = 5 cm/s

0 7 x [cm]6 15 15 22

DDHV

Rig = 0.32 Rig = 0.48 Rig = 0.45



0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

Rig

L m
 [c

m
]

 

 
frame 0
frame 1
frame 2

Figure 21: Momentum mixing length vs Rig.
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Figure 22: Density mixing length vs Rig.
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Figure 44: Gradient Richardson number, based on the density (reordered) and velocity gradients computed inside a dis-
turbance. z̃ = 0 is the position of the the middle of the disturbance (weighted mean of the vertical positions, where the
weights are the Thorpe displacement). The average is performed over all downstream position in a given image (as long as
no overturn is present) and over all images.
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Rig for average perturbed regions



2009 data : horizontal plate
with density recalibration image by image - 25/07/14

1 Mean values

In what follows, the quantities are time- (and run-) averaged, then spatially averaged along x in a band of 7 cm (except
the first frame where the band is only 2 cm wide).
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Figure 1: Mean velocity ⟨u⟩ component vertical profiles for different x.
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Figure 2: Mean velocity ⟨w⟩ component vertical profiles for different x.
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Figure 8: urms vertical profiles for different x.
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Figure 9: wrms vertical profiles for different x.
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Figure 3: Mean density vertical profiles for different x.
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Figure 10: ρrms vertical profiles for different x.
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Figure 17: Turbulent viscosity vs Rig.
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Figure 18: Turbulent mass diffusivity vs Rig.
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Figure 17: Turbulent viscosity vs Rig.
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Figure 18: Turbulent mass diffusivity vs Rig.
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Figure 34: Intermittency fraction (in %) based on the Thorpe lengths, versus gradient Richardson number, for frames 1
and 2, for the different configurations. It corresponds to the fraction of events (in x and time), where no overturns take
place.
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∂ z Ũ F1
∂ z ρ̃ F2
∂ z Ũ F2
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Conference Notes

• Frenkel Prize talk on Thorpe length and comparison with Ozmidov Length:  POF  (2013) + follow 
on paper.  Decaying turbulence.  Colm pointed to this paper as an important entre into the issues 
associated with different length scales.

• Morning discussion with Colm.  Important point is that our scenario is exactly what theory 
expects and we have all the data to make big contribution to debate about “fossilized turbulence”.  
There should be an age dependence to the behavior of the unstable parts of the flow.  Early time 
instability should have one ratio of LT/Lo whereas late time unstable parts should have the 
opposite ratio.  Highly testable.

• Action items - we very much need to get the dissipation field.  Then evaluate the turbulent 
dissipation over the unstable region defined by the Thorpe length analysis.

• Note - Thorpe length is a conduit for indirect inference about turbulent dissipation without 
measuring velocity.
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