PRIMARY ATOMIZATION UNDER THE SIMULTANEOUS ACTION OF RAYLEIGH-TAYLOR AND KELVIN-HELMHOLTZ MECHANISMS

> VADIVUKKARASAN. M MAHESH V. PANCHAGNULA* mvp@iitm.ac.in

FLUID MECHANICS GROUP DEPARTMENT OF APPLIED MECHANICS IIT MADRAS INDIA

> Emil Hopfinger Colloquium 11-13 May 2016

INTRODUCTION	Modelling	Results	A/C ANALYSIS	SUMMARY
• 0 0 0	0000000	000000000	000	
MOTIVATION				

• Atomization - Converting bulk fluid into a multitude of smaller fragments¹

¹Lefebvre,1989.

INTRODUCTION	Modelling	Results	A/C ANALYSIS	SUMMARY
• 000	0000000	000000000	000	
MOTIVATION				

- Atomization Converting bulk fluid into a multitude of smaller fragments¹
- Conventional atomization relies heavily on velocity shear induced K–H mechanism based destabilization

¹Lefebvre,1989.

INTRODUCTION	Modelling	Results	A/C analysis	SUMMARY
•000	0000000	000000000	000	
MOTIVATION				

- Atomization Converting bulk fluid into a multitude of smaller fragments¹
- Conventional atomization relies heavily on velocity shear induced K–H mechanism based destabilization
- What is the role of normal acceleration?

¹Lefebvre,1989.

INTRODUCTION	Modelling	Results	A/C ANALYSIS	SUMMARY
•••••	0000000	000000000	000	
MOTIVATION				

- Atomization Converting bulk fluid into a multitude of smaller fragments¹
- Conventional atomization relies heavily on velocity shear induced K–H mechanism based destabilization
- What is the role of normal acceleration?

¹Lefebvre,1989.² Villermaux and co-wokers.

INTRODUCTION	Modelling	Results	A/C ANALYSIS	SUMMARY
•000	0000000	000000000	000	
MOTIVATION				

- Atomization Converting bulk fluid into a multitude of smaller fragments¹
- Conventional atomization relies heavily on velocity shear induced K–H mechanism based destabilization
- What is the role of normal acceleration?
- Breakup of a cylindrical liquid sheet into asymmetric ligaments³

¹Lefebvre,1989.² Villermaux and co-wokers.³ Santangelo and Sojka,1995.

INTRODUCTION	Modelling	Results	A/C ANALYSIS	SUMMARY
•••••	0000000	000000000	000	
MOTIVATION				

- Atomization Converting bulk fluid into a multitude of smaller fragments¹
- Conventional atomization relies heavily on velocity shear induced K–H mechanism based destabilization
- What is the role of normal acceleration?
- Breakup of a cylindrical liquid sheet into asymmetric ligaments³

These structures are inherently three-dimensional.

¹Lefebvre,1989.² Villermaux and co-wokers.³ Santangelo and Sojka,1995.

INTRODUCTION	Modelling	Results	A/C ANALYSIS	SUMMARY
○●○○	0000000	000000000	000	
PRIMARY ATOMIZ	ATION			

• Acceleration at a two fluid interface

Accelerating inwards

Accelerating outwards

INTRODUCTION	Modelling 0000000	Results 000000000	A/C ANALYSIS 000	SUMMARY
DESTABILIZATIO	N			

K-H mechanism

M V PANCHAGNULA (IIT MADRAS)

M V PANCHAGNULA (IIT MADRAS)

EMIL HOPFINGER COLLOQUIUM 2016

4/26

INTRODUCTION	Modelling 0000000	Results 0000000000	A/C ANALYSIS 000	SUMMARY
OBJECTIVE				

INTRODUCTION	Modelling 0000000	Results 0000000000	A/C ANALYSIS 000	SUMMARY
OBJECTIVE				

• Is it possible to discover three dimensional (helical) instability modes?

INTRODUCTION	Modelling 0000000	Results 0000000000	A/C ANALYSIS 000	SUMMARY
OBJECTIVE				

- Is it possible to discover three dimensional (helical) instability modes?
- Is it possible to identify the optimum conditions in the Bo – We space to yield lowest length scale from a given energy?

INTRODUCTION	Modelling 0000000	Results 000000000	A/C ANALYSIS 000	SUMMARY
OBJECTIVE				

- Is it possible to discover three dimensional (helical) instability modes?
- Is it possible to identify the optimum conditions in the Bo – We space to yield lowest length scale from a given energy?

ASSUMPTIONS

- Inviscid
- Incompressible
- Immisicible
- Non-evaporating

Introduction	Modelling	Results	A/C ANALYSIS	SUMMARY
0000	••••••	0000000000	000	
SINGLE INTERFAC	E			

MEAN FLOW DESCRIPTION

$$\Phi_j(r,z) = W_j z + R_0 \dot{R}_0 \ln\left(\frac{r}{R_\infty}\right); \qquad j = 1,2$$
(1)

Introduction	MODELLING	Results	A/C ANALYSIS	SUMMARY
0000	••••••	000000000	000	
SINGLE INTERFAC	E			

MEAN FLOW DESCRIPTION

$$\Phi_j(r,z) = W_j z + R_0 \dot{R}_0 \ln\left(\frac{r}{R_\infty}\right); \qquad j = 1,2$$
(1)

 $\nabla^2 \phi_i = 0$

$$\phi_j = 0 \tag{2}$$

KBC:

GE:

$$\left. \frac{\partial \phi_j}{\partial r} \right|_{r=r_{sj}} = \frac{\partial r_s}{\partial t} + W_j \frac{\partial r_s}{\partial z}; \qquad j = 1, 2 \quad (3)$$

DBC:

$$p_1 - p_2 = \sigma \kappa \tag{4}$$

$$p_j(r,t) = P_j(t) - \rho_j \left[\frac{\partial \phi_j}{\partial t} + \frac{1}{2} |\nabla \phi_j|^2 \right]$$
(5)

INTRODUCTION 0000	Modelling ○●○○○○○	Results 000000000	A/C ANALYSIS 000	SUMMARY
RADIAL MOTI	ON			
MEAN FLOW	DESCRIPTION			
	$\Phi_j(r,z) = W_j z$	$+ R_0 \dot{R_0} \ln\left(\frac{r}{R_\infty}\right);$	j = 1, 2	

• Cross sectional area of each fluid is constant in time

$$R_0 \dot{R}_0 = R_1 \dot{R}_1 \tag{6}$$

$$\dot{R}_0^2 + R_0 \ddot{R}_0 = \dot{R_1}^2 + R_1 \ddot{R}_1 \qquad (7)$$

I INEAD STADI	LITY ANALVEIS			
INTRODUCTION 0000	MODELLING	Results 0000000000	A/C ANALYSIS	SUMMARY

$$r_{sj}(\theta, z, t) = R_j(t) + a_j e^{(\omega t + ikz + im\theta)}$$
(8)

$$\phi_j = \Phi_j(r, z) + \phi'_j(r)e^{(\omega t + ikz + im\theta)} \quad (9)$$

Movement of the interface

$$\nabla^2 \phi_j = 0$$

Growth of the disturbance

(10)

D	G			
0000	000000	000000000	000	
INTRODUCTION	MODELLING	Results	A/C ANALYSIS	SUMMARY

DISPERSION RELATION - SINGLE INTERFACE

|A| = 0

$$A = \begin{pmatrix} A_{11} & 0 & \omega + ikW_1 + \frac{\dot{R}}{R} \\ 0 & kK_m^{'}(kR) & \omega + ikW_2 + \frac{R}{R} \\ \rho_1 A_{31} & -\rho_2 A_{32} & A_{33} \end{pmatrix}$$

$$\begin{aligned} A_{11} &= I_{m}^{'}(kR)K_{m}^{'}(kR_{0}) - K_{m}^{'}(kR)I_{m}^{'}(kR_{0}) \\ A_{31} &= -(\omega + ikW_{1})B_{1} - \dot{R}A_{11} \\ A_{32} &= (\omega + ikW_{2})K_{m}(kR) - \dot{R}kK_{m}^{'}(kR) \\ A_{33} &= (\rho_{1} - \rho_{2})\ddot{R} - \frac{\sigma}{R^{2}}(1 - m^{2} - k^{2}R^{2}) \\ B_{1} &= (I_{m}(kR)K_{m}^{'}(kR_{0}) + K_{m}(kR)I_{m}^{'}(kR_{0})) \end{aligned}$$

 $I_m'(x)$ and $K_m'(x)$ are the first derivatives of $I_m(x)$ and $K_m(x)$ with respect to its argument.

INTRODUCTION 0000	MODELLING 0000000	Result	TS 000000	A/C ANALYSIS	S	UMMARY
DISPERSION RE	ELATION - ANI	NULAR INT	ERFACE			
		A = 0)			
$\left(-kI'_{m}(k)\right)$	R_i) $kK'_m(kR_i)$	0	0	0	A ₁₆ 0	
$kI_m(kR$	k_0) $-kK_m(kR_0)$, 0	0	0	0 0	
4 - 0	0	$kK_m(kR_o)$,0	, 0	$0 A_{37}$	
A = 0	0	0	$-kI_m(kR_i)$	$kK_m(kR_i)$	$A_{46} = 0$	
0	0	0	$-kI_{m}(kR_{o})$	$kK_{m}(kR_{o})$	$\begin{array}{c} 0 & A_{57} \\ \end{array}$	
	0	0 A73	A64 A74	A65 A75	$\begin{pmatrix} A_{66} & 0 \\ 0 & A_{77} \end{pmatrix}$	
$A_{64} = -\rho_l \left((\omega$	$A_{16} = \omega + ikW_i$ $A_{57} = \omega + ikW_i$ $\phi + ikW_i I_m (kR_i) - \sigma$	$+\frac{\dot{R}_i}{R_i}; A_{37} = \omega$ $W_l + \frac{\dot{R}_o}{R_o}; A_{61} =$ $-\dot{R}_i A_{11}); A_{65}$	$\omega + ikW_o + \frac{\dot{R_o}}{R_o}$ $= -\rho_i \left((\omega + ik) \right)$ $= -\rho_l \left((\omega + ik) \right)$	$; A_{46} = \omega + ik$ $W_1)I_m(kR_i) - W_l)I_m(kR_i) - W_l$	$EW_l + \frac{\dot{R}_i}{R_i}$ $- \dot{R}_i A_{11})$ $+ \dot{R}_i A_{12})$	
$A_{66} = (\rho_i - \rho_i)$	$(p_1)R_i - \frac{r_i}{R_i^2}(1 - m^2)$	$-k^2 R_i^2$; A_{73}	$= \rho_o \left((\omega + ikW) \right)$	$V_o)K_m(kR_o) -$	$(R_o A_{33})$	
$A_{74} = -\rho_l \left(\left(\omega + \right) \right)$	$-ikW_l)I_m(kR_o) - I_l$	$R_o A_{44}$); $A_{75} =$	$= -\rho_l \left((\omega + ikW) \right)$	$V_l)K_m(kR_o) - \sigma$	$-R_oA_{33}$	
		A_{77}	$= (\rho_o - \rho_1)\ddot{R_o}$	$1 + \frac{\sigma_o}{R_o^2}(1 - m^2)$	$(k^2 - k^2 R_o^2)$	

Introduction	Modelling	Results	A/C ANALYSIS	SUMMARY
0000	○○○○○●○	0000000000	000	
DISPERSION RELA	TION			

NON-DIMENSIONAL DISPERSION RELATION

 $\mathscr{D}(\omega, k, m) := \mathscr{G}_{2}\omega^{2} + \mathscr{G}_{1}\omega + \mathscr{G}_{0} = 0 \text{ (Single interface)}$ $\mathscr{D}(\omega, k, m) := \mathscr{F}_{4}\omega^{4} + \mathscr{F}_{3}\omega^{3} + \mathscr{F}_{2}\omega^{2} + \mathscr{F}_{1}\omega + \mathscr{F}_{0} = 0 \text{ (Annular interface)}$

$$R_m = R_1; \qquad \alpha = \frac{R_0}{R_m} = 10^{-2}; \qquad \omega = \omega \sqrt{\frac{\sigma}{\rho R_m^3}}; \qquad k = k R_m;$$

 $\rho\text{=}\max(\rho_1\,,\,\rho_2)$ and $\rho_1\,>\,\rho_2$ for single interface,

$$Bo = \frac{(\rho_2 - \rho_1) \ddot{R} R_m^2}{\sigma} \qquad We = \frac{\rho_1 (W_1 - W_2)^2 R_m}{\sigma} \qquad Q = \frac{\rho_2}{\rho_1} = 10^{-3}$$

 $\rho_{1(i)} < \rho_{2(l)} > \rho_{3(o)}$ for an annular interface, j=i, o(1,3), 2=l

$$Bo = \frac{(\rho_i - \rho_l) \ddot{R}_i R_m^2}{\sigma} \qquad We_j = \frac{\rho_l (W_j - W_l)^2 R_m}{\sigma} \qquad Q_j = \frac{\rho_j}{\rho_l} = 10^{-3} \qquad \lambda = \frac{R_i}{R_0} = 0.98;$$

¹Rayleigh,1878, ²Chen et al,1997, ³Yang,1992, ⁴Chandrasekhar ,1961

• Inner wall does not affect the stability characteristics

- Neutral stability and growth rate are influenced by Bond number
- Deformation mode is influenced mostly by Weber number

- Neutral stability and growth rate are influenced by Bond number
- Deformation mode is influenced mostly by Weber number

- Neutral stability and growth rate are influenced by Bond number
- Deformation mode is influenced mostly by Weber number

R-T-K-H SINGLE INTERFACE-REGIME CHART

R-T-K-H SINGLE INTERFACE-REGIME CHART

• Shortwave helical wavelength (800 < We < 1200)

M V PANCHAGNULA (IIT MADRAS)

EMIL HOPFINGER COLLOQUIUM 2016

R-T-K-H SINGLE INTERFACE-LENGTH SCALES (Bo = 165)

R-T-K-H SINGLE INTERFACE-LENGTH SCALES (Bo = 165)

INTRODUCTION 0000	Modelling 0000000	Results	A/C ANALYSIS 000	SUMMARY

COMBINED R-T-K-H INSTABILITIES OF A CYLINDRICAL INTERFACE - SUMMARY

- Neutral stability and growth rate are influenced by Bond number
- Deformation mode is influenced mostly by Weber number
- Optimum Weber number exists for a given Bond number
- Radial acceleration (*Bo*) based destabilization is significantly more efficient than shear induced (*We*) destabilization.

M V PANCHAGNULA (IIT MADRAS)

EMIL HOPFINGER COLLOQUIUM 2016

INTRODUCTION	Modelling	Results	A/C ANALYSIS	SUMMARY
0000	0000000	○○○○○○○●○	000	
ANNULAR INTERF	EACE, $Bo + We_i$	$+We_{o}=\xi=1$	000	

ς

 $\epsilon = (\rho_i - \rho_l)R_m\ddot{R}_i + \rho_l(W_l - W_i)^2 + \rho_l(W_l - W_o)^2; R_m\epsilon/\sigma = Bo + We_i + We_o = \xi$

• Highest Bond number yields lowest length scale

INTRODUCTION 0000 Modelling 0000000 RESULTS

A/C ANALYSIS

SUMMARY

COMBINED R-T-K-H INSTABILITIES OF AN ANNULAR INTERFACE - SUMMARY

- Neutral stability and growth rate are influenced by Bond number
- Deformation mode is influenced mostly by Weber number
- Radial acceleration (Bo) based destabilization is significantly more efficient than shear induced (We_j) destabilization.
- A novel principle of primary atomization is proposed

ABSOLUTE AND CONVECTIVE INSTABILITY

- If the disturbances spread both upstream and downstream
- If the disturbances are swept downstream or upstream

ABSOLUTE/CONVECTIVE INSTABILITY

