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Large Eddy Simulation of katabatic flow along a convexly
curved slope is performed. A special focus is given on the
outer-layer shear of the katabatic jet. Both a statistical
quantitative analysis and a qualitative description of vortical
structures are used to describe the present turbulent flow. It is
shown that Gortler vortices oriented in the streamwise
downslope direction and with a vertical mushroom shape
develop in the shear layer. They play a specific role with
respect to local turbulent mixing in the ground surface
boundary layer. Such curved slope constitutes a realistic
model for alpine orography. We provide a novel procedure
based on local turbulence anisotropy to track Gortler vortices
for in situ measurements.
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Prandtl Model

Analytical solution for the Prandil model:
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Up(Z) — Vosin(Z/Lo)e
0p(Z) — O0ref(2) = ©oc0Ss(z/Lo)e
Three characteristic scales Ly, Vp and ©, have to be
prescribed from the boundary and ambiant conditions. For
heat flux boundary conditions, replacing viscous by turbulent

quantities, and assuming mixing coefficients Km;; and K,
constant along z, one gets
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where Fg = picsp IS the heat flux at the ground surface.

Present model adaptation with non constant diffusion:

Ko = KN + _8asz Lo 2)
Ko = KN + —%KZ’" Vo 2)
KSe = Kin(1 + 2%

Prandtl model ~ Kjpin  %fmLo  9XmVo  OKmOo
x =1,450m 0.15m°/s 0.04m/s 0.14m/s 0.17m/s
x =1,500m 0.15m?/s 0.05m/s 0.25m/s 0.33m/s
x =1,550m 0.15m°/s 0.06m/s 0.42m/s 0.58m/s
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Numerical Model

Meso-NH Model: CNRM & LA Toulouse France
» Pseudo-incompressible Navier-Stokes equations

» Anelastic approximation

» Buoyancy effects (gravity)

» No Coriolis effects

» Dry air (perfect gas)

» LES: egig equation & mixing length closure

» Grid vertical refinement near the ground surface
» 5 M grid points on 128 MPI proc. of IBM-SP6

» Initial conditions: air at rest with a constant % = eref@—go
» Ground surface cooling Hs < 0

Resolution/Boundary conditions
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Case u (m/s) Nyg (s~') Hs (W/M?) (u)max (M/s)
A0 0.19 0.011 —10
A1 0.24 0.013 —30
A2 0.18 0.013 —10 .

A3 0.15 0.020 —30 -
B1 0 0.013 —30 —

Anisotropy Invariant Map

Anisotropy tensor:
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second and third invariants:
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departure from isotropic turbulence:
F(z) =149k + 3/
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TKE Budget

Turbulent Kinetic Energy

TKE = 2 ((W?) + (v3) + (w?))
Horizontal and vertical production
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Evidence of Gortler vortices in katabatic jet along a

LCG

Flow Visualisation

» [ransition to turbulence in the outer shear layer zone:
Ri < Ric =0.2
» CGonvex slope — > Gortler instability :
spanwise wavelength Ay = 110 — 130 m
» Strong streamwise counter-rotating (red/blue) vortices
» Local turbulent mixing enhanced

Q criterion Q = (u)2,,,/H?

Q criterion Q[1073 s79]

Om 250m 500m Om 250m 500m Om 250m 500m
. .
—5-2 0.6 —2-090.2 -5 -2 +1

Streamwise velocity u; [m.s~ 1]

- 150m
: - - @ A . 75m

* A a2 . s .. - 0m
50m 500m Om 250m 500m

Om 250m SOOM Om 2

- .
—-0.6 0.7 1.9

- .
—-0.3 0.4 1.1

- .
—-0.5 05 1.5

vertical velocity (mixing) us [m.s~ ]

150m
e K /5m
—om
Om
s s s
—1.2 -020.7 —06 0104 —0.7 -0.1 0.5

SGS Kinetic Energy (Turbulent shear layer) e [1?/5?]

150 m
/5m
Om
B B B
0O 0.08 0.16 0 0.03 0.06 0O 0.04 0.08
Case A1 Case A2 Case A3

Spanwise Energy spectra
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wavelength parameter:
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