

Transition to geostrophic convection: The role of boundary conditions

Rudie Kunnen¹,Rodolfo Ostilla-Mónico², Erwin van der Poel², <u>Roberto Verzicco^{3,2}</u>, Detlef Lohse²

- ¹ Eindhoven University of Technology ² University of Twente
 - ³ University of Rome "Tor Vergata"

Emil was the Editor of my first JFM paper

J. Fluid Mech. (1993), vol. 256, pp. 615-646 Copyright © 1993 Cambridge University Press

Vortex rings impinging on walls: axisymmetric and three-dimensional simulations

By PAOLO ORLANDI AND ROBERTO VERZICCO

Università di Roma "La Sapienza" Dipartimento di Meccanica e Aeronautica, via Eudossiana nº 18 00184, Roma, Italy

(Received 13 November 1992 and in revised form 3 May 1993)

He was very rigorous but we have to be grateful to him

615

Turbulent *rotating* convection

Relevant in the atmosphere of planets, in planets and stellar interiors

... and in any flow where buoyancy interacts with a background rotation

Rotating thermal convection $\Lambda \Omega$ $\rightarrow \Delta T$ H Ekman: ΔT Η

Rayleigh: thermal forcing $Ra = \frac{g\alpha\Delta T H^3}{\nu\kappa}$ Prandtl: fluid properties $Pr = -\frac{\nu}{-}$ viscous Coriolis $Ek = \frac{\nu}{2\Omega H^2}$ Aspect ratio: geometry $\Gamma = \frac{D}{H}$

Rotation stabilises RB convection

Asymptote for rapid rotation ($Ta \rightarrow \infty$):

 $Ra_{c} = 8.7 Ta^{2/3} = 8.7 Ek^{-4/3}$

 $L_c = 4.8 Ta^{-1/6} = 4.8 Ek^{1/3}$ (most unstable wavelength)

Parameter space (Ra/Ra_c vs Ta)

Parameter space (Ra/Ra_c vs Ta)

Typical result from Kunnen et al. (2008)

Ra= 10⁹, Pr=7

After Ecke & Niemela (2014)

Parameter space (Geostrophic convection)

Geostrophic convection

Figure from Ecke & Niemela 2014

Data from: Ecke & Niemela 2014, King et al. 2009, Zhong et al. 2009, Liu & Ecke 2009, Zhong & Ahlers 2010, Niemela et al. 2010

Geostrophic convection: parameters

Extra problem: centrifugal buoyancy $\Omega^2 R / g = 0.64$

Objective

Fill with some data the "empty" region

Numerical simulations

r fits 10 most unstable wavelengths

 $(L_{c_{Ra}}^{=4}.82Ek_{Ek}^{1/3}) \text{ (only for } NS)$

26 three-dimensional simulations (13 no-slip and 13 stress-free) to study the transition $\sum_{n=1}^{10^2}$ to the geostrophic regime

1×10^{10}	4.00×10^{-7}	0.040	29.5	0.36	384 imes 384 imes 768	8.82	21.0	12
1×10^{10}	4.00×10^{-7}	0.040	29.5	0.71	$768\times768\times768$	9.13	21.0	12
1×10^{10}	6.00×10^{-7}	0.060	50.6	0.41	384 imes 384 imes 768	20.7	31.4	15
1×10^{10}	9.00×10^{-7}	0.090	86.9	0.46	384 imes 384 imes 768	46.2	50.2	17
1×10^{10}	1.20×10^{-6}	0.12	127.5	0.51	$384\times 384\times 768$	68.5	65.2	18
1×10^{10}	1.50×10^{-6}	0.15	171.7	0.55	$384\times 384\times 768$	91.0	76.0	20
1×10^{10}	$2.00 imes 10^{-6}$	0.20	252.0	0.61	512 imes 512 imes 768	113.7	83.5	23
$5 imes 10^{10}$	1.34×10^{-7}	0.030	34.3	0.25	$512\times512\times1024$	9.20	21.1	12
$5 imes 10^{10}$	1.79×10^{-7}	0.040	50.4	0.27	$512\times512\times1024$	18.2	30.8	14
$5 imes 10^{10}$	$2.95 imes 10^{-7}$	0.066	98.3	0.32	$512\times512\times1024$	52.9	61.5	17
$5 imes 10^{10}$	4.02×10^{-7}	0.090	148.6	0.36	$512\times512\times1024$	95.0	88.3	19
$5 imes 10^{10}$	4.92×10^{-7}	0.11	194.2	0.38	$512\times512\times1024$	117.0	103.5	21
5×10^{10}	6.71×10^{-7}	0 15	202 6	0 49	$519 \times 519 \times 1094$	150 6	110 5	93

Г

AFiD

Highly parallel code for wall bounded turbulence

Open-source code available at www.afid.eu

Reference and tutorial:

Van der Poel et al. (2015), Computers & Fluids **116**, "A pencil distributed finite difference code for strongly turbulent wall-bounded flows"

Upcoming modules:

- Cylindrical coordinates (Taylor Couette)
- Lagrangian particles
- Double diffusive convection
- GPU architectures

Heat transfer (Nusselt)

Nusselt vs Ek

The theoretical prediction by Julien et al (2012) Nu ≈Ek^a with a=2 agrees fairly well with the SF cases but not with the NS ones The exponent a shows a pronounced dependence on Ra and this might explain the scatter in the observations 1<a<4

SF: large vortex due to inverse energy cascade (Rubio et al., Favier et al.)

NS: Ekman layer: source of intense fluctuations

AM Rubio, K Julien, E Knobloch & JB Weiss, *Phys Rev Lett* **112**, 144501 (2014) B Favier, LJ Silvers & MRE Proctor, *Phys Fluids* **26**, 096605 (2014)

Experimental visualizations (Sakai 1997)

Thermochromic crystals: blue (hot) orange (cold)

The Ekman layer "pumps" the heat into the vertical columns and this enhances the Nu with respect to the free-slip case

S. Sakai, J. of Fluid Mech. 333 (1997)

Thermal boundary layers

Thermal BL: $\overline{\mathsf{SF}\,\delta}_{\theta,\mathsf{rms}}$ Δ The transition occurs NS $\delta_{\theta, rms}$ Δ for, both SF and NS, at 10⁻² similar values of Ek *Ra* = 1 x 10¹⁰ δ_θ $Ra = 5 \times 10^{10}$ 10⁻³ו 10⁻⁶ 10⁻⁷ Ek

Viscous and thermal boundary layers

linked to position $\delta_{\rho} = \delta_{\mu}$

Conclusions

DNS has been used to "populate" an empty geostrophic region of the Phase diagram

The transition to geostrophic convection has been described

Transition found in:

- heat transfer (Nu)
- flow phenomenology
- BL thickness

Transition is gradual; found in same *Ek* range for both no-slip and stress-free plates

