Closed-loop Control of Laminar Separation Bubbles

A. SPOHN¹ , V. PAREZANOVIĆ² and L. CORDIER¹

- 1. Institut PPRIME, CNRS, Université de Poitiers, ISAE-ENSMA, Poitiers, France
- 2. ISAE-Supaero, Toulouse, France

ANR SepaCoDe - Flow separation control

Motivation

Goal: Test closed-loop control to minimize impact on global flow

- **Need :** Controlled canonical flow conditions
 - Low actuation levels for actuation
 - Optical sensing of the flow state (real time)

Outline

- Summary of L.S.B. properties
- Experimental set-up
- Open-loop periodic forcing
- Closed-loop control
- Conclusion

Main Aspects of L.S.B.

Structure of laminar separation bubbles – or better transitionnal separation bubbles

Emil Hopfinger Colloquium 2016

Water Tunnel Facility

Specifications:

- flow section 0.3 m x 0.50 m x 2.10 m
- speed < 0,50 m/sec
- maximal power 5 kW

Experimental techniques:

- hydrogen bubbles (Schraub et al. 1965)
- electrolytic precipitation (Taneda et al. 1975)
- dye
- PIV (2D-2C)

Smooth Ramp Configuration

Ramp parameters Sommer 1992 (triple deck) Schlichting & Gersten 2006 $= U_{\infty}$ Н ĩ Ŷ $Re = \frac{U_{\infty} L}{V}, \quad \frac{1}{L}, \quad \frac{1}{H}$ $1 \le \tilde{x} \le 1+l: \qquad f(\tilde{x}) = \left[20\left(\frac{\tilde{x}}{l}\right)^7 - 70\left(\frac{\tilde{x}}{l}\right)^6 + 84\left(\frac{\tilde{x}}{l}\right)^5 - 35\left(\frac{\tilde{x}}{l}\right)^4 + 1\right]$ **Range:** $3 \cdot 10^3 \le \text{Re} \le 3 \cdot 10^4$ $\frac{l}{L} = 6$ $\frac{l}{H} = 10$

Ramp installed in water tunnel

Actuator system

Actuator

- Dimensions:
- Excitation frequency:
- Maximal Amplitude:

$$\emptyset = 0.13 \, mm \approx \frac{1}{100} \delta$$
$$0.16 \le f_e / f_n \le 5$$
$$a_{max} \simeq 40 \% \delta$$

Effect of Open-loop Actuation

Identification of Most Unstable Modes

• Most unstable mode with St = 0.034 (PIV) - theory Ho & Huerre (1984) St = 0.032

Emil Hopfinger Colloquium 2016

Open-loop Forcing – Objective Function

Continuous production of H_2 bubbles

- Evaluated a posteriori from mean images
- Use of threshold for light intensity (I=0.4)

Open-loop mapping

Emil Hopfinger Colloquium 2016

Optical Feedback Control – Global Sensing (PCA)

Emil Hopfinger Colloquium 2016

Velocity Measurements with Hydrogen Bubbles

Measurement of velocity along a horizontal line 1. Instantanious visualisation Velocity Profiles inside B.L. $(3000 \le \text{Re} \le 20000)$ 2. Peaks of light intensity in the region of interest 3. Local velocity time series from a sequence of images 75 10 125 15 175 20 225 2 II (cm/s)

Velocity Field of U component (Re = 7900)

Emil Hopfinger Colloquium 2016

Objective Function using Velocity Measurements

Extract instantaneous velocity u along a line:

Closed-loop Control - Local Sensing

Closed-loop Control - **Position of Sensor**

Actuation frequency depends on sensor location !

Conclusion

- Actuation around the natural KH frequency proves to be most efficient.
- The definition of a cost function appears to challenging.
- Local sensing leads to frequency selection for actuation.
- Closed-loop control in combination with convective transport of perturbations leads to periodic forcing.
 - Similar to control of mixing layer see V.Parezanović et al. (2016).
- Lagrangian velocity measurements are promising for long experimental runs in combination with real-time measurements.