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Abstract

The possibility of employing both Rayleigh-Taylor (R–T) (Mikaelian 2005) and Kelvin-
Helmholtz (K–H) (Yang 1992; Panchagnula et al. 1996) mechanisms simultaneously as
equal contributors to the primary destabilization process (Rehab et al. 1997; Lasheras
et al. 1998) is discussed. A linear stability analysis is performed to develop an under-
standing of a primary atomization under this combined action. Three–dimensional dis-
turbances are considered in order to predict the breakup structure (ligaments) observed
in experiments (Santangelo & Sojka 1995). The fluids are assumed to be inviscid and
incompressible. From the governing equations and the boundary conditions, a disper-
sion relation is derived and analyzed for a single as well as two interfaces. Four different
regimes have been shown to be possible, based on the most unstable axial (k∗) and cir-
cumferential (m∗) wavenumbers. They are (i) Taylor mode (k∗ > 0,m∗ = 0). (ii) flute
mode (k∗ > 0,m∗ > 0), (iii) sinuous mode (k∗ = 0,m∗ = 1) and (iv) helical mode
(k∗ > 0,m∗ > 0). In order to represent the simultaneous action of k∗ and m∗, a charac-
teristic length scale (L∗) is defined as L∗ = min

(

2π

k∗
, 2π

m∗
, 2π

k∗m∗

)

, where 2π/k∗ and 2π/m∗

represent the two–dimensional length scales in the Taylor and flute modes respectively.
The helical mode is represented by a scale given by 2π/k∗m∗. This definition of L∗ allows
us to compare the deformation length scales in the three regimes, viz. Taylor, flute and
helical mode using a single length scale measure. The dimensionless quantities relevant to
this study are Bond number (Bo) representing the ratio of radial acceleration force to the
surface tension force and Weber number (We) representing the ratio of the aerodynamic
force due to the relative velocity to the surface tension force at each interface.

This study reveals that three-dimensional disturbances (helical modes) dominate the
system behavior under certain parametric conditions, which is advantageous to interface
distortion. In addition, this study also reveals that for a given energy, the length scale as-
sociated with destabilization due to radial acceleration (R–T mechanism) is significantly
more efficient than the traditional way of destabilizing an interface using axial relative
velocity (K–H mechanism, Lasheras & Hopfinger (2000)).

As can be seen, figure 1(a) represents the instability regime map in the Bond number
(Bo) and Weber number (We) space (Villermaux & Clanet 2002; Clanet & Villermaux
2002). For Bo < 40, the value of L∗ is found to be minimum when K–H mechanism is
made dominant through high We. In contrast, for Bo > 40, the value of L∗ is observed
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Figure 1: (a) Instability regime map in the Bond number (Bo) – Weber number (We)
plane for a single interface. The continuous line separates the regimes showing different
destabilization modes. The symbols indicate the location of We that yield the minimum
value of L∗ for a given Bo. The value of L∗ is indicated in the parentheses next to
symbol. (b) Instability regime map for an annular interface. A ternary phase diagram
showing the effect of the three parameters. The three sides of the triangle of the regime
map correspond to the Bond number (Bo), inner Weber number (Wei) and outer Weber
number (Weo). ζ = Bo +Wei +Weo = 1000 in this figure. The dashed line separates
the regimes showing different destabilization modes. ◦ denotes the lowest characteristic
length scale (L∗ ≈ 0.08) obtained at (Bo,Wei,Weo) = (900, 0, 100). The other symbols
represent the L∗ = 0.1 at different flow conditions. � represents (600,400,0). ⊳ and ⋄

represents the (680,220,100) and (900,100,0) respectively.

to be minimum at some optimal We (∼ 103). This is because of the onset of short wave-
length helical modes. Further, a continuous increase in We causes the instability mode
to transition to the Taylor mode and yields higher L∗. This implies that, for a given
Bo(> 40), any value of We > 1200 is counter-productive towards interface destabiliza-
tion. Note that from figure 1(a) that L∗ obtained for (Bo, We)=(30,5000) is 1.05 whereas
(Bo, We)=(40,1000) yields 0.87. This signifies a slight increase in Bo will yield smaller
L∗ even at a lower We. Therefore, it is beneficial to operate at an optimal value of (Bo,
We) as shown in figure 1(a) in the form of open circles.

The instability regime map and contours of L∗ that correspond to the Bond number
(Bo), inner Weber number (Wei) and outer Weber number (Weo) of an annular interface
is shown in figure 1(b). Here, the minimum L∗ is identified subject to the constraint of
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constant total energy, ζ, causing the destabilization. For ζ = 1000, the lowest value of
L∗(≈ 0.08) occurs at (Bo,Wei,Weo)=(900,0,100). The relative proportion of Bo to Weo
at this point suggests that 90% of ζ is used to induce radial acceleration, while the rest
10% is used to induce shear through the outer air stream which yields a minimum value
of L∗. It is worthwhile to note from figure that ζ can yield nearly the same minimum L∗

at different flow conditions and such points are represented by symbols.

In conclusion, the results of our study open up new avenues for designing atomizers to
destabilize a liquid sheet by radial motion instead of axial motion. In addition, the onset
of transition from absolute instability to convective instability, in the (Bo-We) space is
identified.
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