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From stratified gravity flow to a practical hydraulics problem 
 

By Gilles Corcos, 
Emeritus Professor, University of California, Berkeley 

 
Abstract 

 
As an aside (section 3) in his JFM 1968 article on gravity currents, Brook Benjamin 
had established  the properties of  a liquid  emptying  from a horizontal  tube and of 
the upstream propagation with respect to that liquid of  a semi infinite pocket or 
bubble   of a lighter liquid or gas.   It turns out that in the hydraulics of pipe flow 
under gravity, a phenomenon is frequently present which is closely related to 
Benjamin’s idealized model.  The latter also informs the mechanics of siphons.  
Useful but little known practical consequences of this fact have now been exploited. 
 
 
Introduction. 
Designers of water conduction lines utilizing gravity between a source of water at 
atmospheric pressure and a lower reservoir are well aware of the mischiefs that are 
frequently caused by the presence or ingestion of air in the piping: It frequently acts 
as a block to the flow of water.  Since for an obvious practical reason the conduction 
line is forced to follow the relief of the ground, it most often encounters local high 
points near which the air may accumulate, and therefore some lengths of horizontal 
conduits. The usual practice is to provide automatic air relief valves at each of the 
high points encountered. This blind practice has serious disadvantages, but very little 
literature has provided alternatives by analysing the behaviour of these pockets of air 
which when stationary are in fact long bubbles. 
  
Having become late in my career one of these designers I chose to look into the 
matter. In a UC Berkeley lab I set up a scaled-down model of such a conduction line 
allowing both the introduction of air upstream in the pipe and a variable water flow 
rate and using transparent plastic pipes to visualize the phenomenon.  
 
I had also remembered a lecture given on the Berkeley campus by Brook Benjamin on 
the subject of stratified gravity flow in which an idealized model of such flows was 
given a remarkably simple representation, that of a horizontal two-dimensional semi 
infinite channel sealed on one end, initially full of water and discharging  under 
gravity at the other end.  

 
 

Figure 1.Brook Benjamin’s (1968) inviscid model of a water-filled pipe emptying at 
one end 
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As an aside, in a published version of his study he extended his model to the 
discharge of a horizontal tube of water, closed at one end and discharging to the 
atmosphere at the other. 
 
The Brook Benjamin model . 
In that model the coordinates are chosen so that the nose of the bubble is  
stationary, there is a cross-wise uniform flow at upstream infinity and a stagnation 
point at the nose of the bubble on the upper part of the pipe wall and there is again a 
uniform flow under the bubble sufficiently far downstream of the bubble nose.  
The fluid is assumed inviscid. 
Use of the Bernoulli equation, as well as the integral momentum and continuity 
equations lead to an algebraic equation in terms of trigonometric functions of the 
cross-sectional geometry of the flow far downstream and this equation yields a unique 
real solution in which the far downstream velocity with respect to the nose of the 
bubble is supercritical; its Froude number is greater than 1.   This is important since it 
implies that perturbations of that flow downstream of the bubble nose cannot affect 
the flow around it.  
 
While I had overlooked the existence of extensive and relevant laboratory studies by 
Zukoski (2), I had simulated the conditions of Brook Benjamin’s model somewhat 
differently, i.e. more in keeping with the practical situation I had encountered in the 
field, where the fluid has some viscosity and the oncoming flow is not crosswise 
uniform  
 
 

 
Fig 2.  The essential part of my experimental set up 

 
The pipe diameter was typical of those used in our field conduction lines.. The flow 
rate was measured when, as it was gradually decreased the bubble just stopped 
receding downstream and advanced in the horizontal part of the configuration shown. 
When the bubble nose was made stationary there, the flow rate was taken to 
correspond to the velocity of propagation of the bubble nose.  
The downstream Froude number was deduced to be 1.38 from the flow rate by using 
continuity and a visual (and therefore approximate) measure of the interface height, 
(about half way up).  In view of the small value of the non-dimensional surface 
tension parameter, it was assumed that it and the Reynolds number were, for our 
practical use, of small import so that the basic parameter influencing the critical flow 
rate (the flow rate with respect to which the propagation velocity of the bubble is 
stationary) was of the form : 
 

Qcr=A(d5/2g1/2);     (1) 
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where A is assumed a constant. For the horizontal pipe A was determine to be 
approximately  
 

A=0.38 
 
Zukoski ‘s experiments inform us to what extent this assumption is justified. 
 
 In summary my very limited experimental results are close to Zukoski’s and to the 
theoretical results of Brook Benjamin, this, in spite of the differences between the 
three flows.  This extends to the measurements for tubes inclined to the horizontal. 
There, while in general no theoretical results have apparently been reported, Zukoski 
and I both find that for comparable values of the parameters, the propagation velocity 
of the bubble with respect to fluid at rest first increases as the slope of the pipe 
increases from the horizontal and reaches a maximum around 35 to 40 degrees and 
then decreases to a value inferior to that for a horizontal tube.  
 
Consequences for the flow with air bubbles in the vicinity of local high points in 
gravity systems. 
 
First the fact that the flow below the bubble becomes supercritical in the sense of 
shallow water theory implies as noted above that downstream perturbations cannot 
affect the behaviour of the flow near the bubble nose. That is the case in particular 
when the flow is subject downstream to something similar to a hydraulic jump as the 
water fills the pipe again.  So we get the interesting result that finite bubbles can and 
often do propagate with respect to fluid within horizontal pipes with a finite velocity 
closely dependent only on the pipe diameter.  
 
Second in the downstream, lowering side of the high point for our field conditions the 
bubble will not be chased downstream until the flow rate has reached a value larger 
than the critical flow rate for the horizontal pipe. The value of this flow rate depends 
on the slope of the pipe. 
To be conservative in our designs the criterion used as sufficient though seldom 
necessary to expel a bubble downstream in Q= Ad5/2g1/2 has been chosen as:  
  

A>0.5 
 

Third, as in the simplified example of Brook Benjamin, the velocity of the incoming 
stream with respect to the bubble nose is lower than the critical velocity (gr)1/2), (r 
being the pipe radius  and g the gravity constant) ; consequently according to shallow 
water theory the transition to supercritical flow can only occur on a horizontal sill so 
that the nose of the bubble will always be found right at the high point of the pipeline 
when the flow rate generates a supercritical condition downstream of the bubble nose. 
Additionally it is clear that if there is flow the bubble cannot originate ahead of (i.e. 
upstream lower than) the high point since in that case the velocity needs to increase 
around the bubble, while the potential head also needs to increase and the pressure 
remains constant as soon as the bubble head is reached. 
As a result:  for lower flow rates, the head of the bubble is found at the high point and 
its end is found on the downstream side of that local maximum. There lies the reason 
for head losses due to air pockets:  This head loss is equal to the level difference 
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between the head and the tail of the bubble. The mass of the air bubble remains fixed 
but its volume for a given mass depends on the pressure within the bubble.  
 
On the other hand if the flow rate exceeds that for which the bubble can propagate on 
the downstream inclined segment of the pipe, the bubble will be swept downstream 
along with the water.   
To summarize: for velocities inferior or equal to that required for a semi infinite 
bubble to be stationary in a horizontal pipe the bubble nose is found at the high point 
while its tail is found downstream and lower.  
 

 

 
 
 

Figure 3. The geometry of a stationary bubble near a local high point (case of 
a restricted flow) 

 
This is the case also when the incoming velocity while higher is still insufficient to 
chase the bubble down the inclined section downstream of the high point. 
 Finally when the flow rate exceeds that needed to maintain the bubble stationary 
within the inclined section, the bubble is expelled downstream and the transient 
bubble occasions no average head loss. 
 
 Several practical consequences can be drawn from these results: 
 
1. If, as needed when the flow rate is sufficiently small, an automatic air relief valve 

is used to expel the air of the bubble, it imperatively needs to be located 
somewhat downstream of the high point. To minimize the head loss due to the 
bubble the location of the valve will be as close as possible to that high point.  

 
2. When the total head available allows the extra loss due to the choice of a locally 

smaller diameter it is possible by so doing to chase the bubble downstream. 
Alternatively it is always  possible  to make it stationary by increasing the local 
value of the pipe diameter, (see equation 2). Theses manipulation turns out to be 
of great utility. When it is advantageous or necessary to keep the bubble in place 
and get rid of it with an air release valve, the velocity of the local incoming flow 
should be lower than required to chase the bubble downstream. The reason is that 
if it is not, incoming air from upstream will transit through the valve and activate 
it off-and-on ceaselessly, therefore shortening its life. This condition can always 
be accommodated. When either the velocity of the water in the pipe is naturally 
high enough or can be made so by decreasing the local pipe diameter the bubble 
is expelled downstream and the loss of head corresponding to the level difference 
between head and tail of the bubble  is essentially totally avoided. 
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The foregoing and related considerations have been systematically exploited in many 
dozens of gravity conduction lines whose average slope was as small as 0.002 but 
whose local elevation excursions were very large, (i.e. for which the potential for 
head losses from air bubbles was far greater than the head available). And these 
applications have turned out to be uniformly successful. 
A practical manual (Air in Pipes, second edition) to exploit the use of the technique is 
available on line from the website www.aplv.org,  A computer program due to C. 
Huizenga and based on these considerations and automatizing the optimum design of 
conduction lines is available from the same source. 
 
The sketchy discussion presented above invites further studies. This is true in 
particular of the unsteady flows that results from the possibly steady accretion of air 
upstream of the high points.  The occurrence of these transients spans very large times  
and they can be very violent.  
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