Energy cascade in internal wave attractors

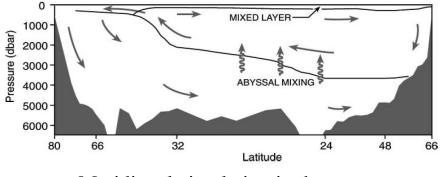
E. Ermanyuk

in collaboration with

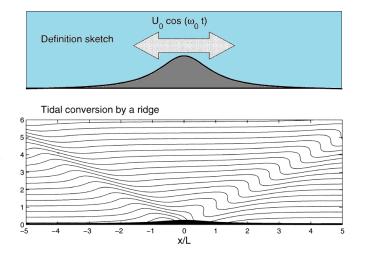
C. Brouzet, I. Sibgatullin, G. Pillet, S. Joubaud, T. Dauxois

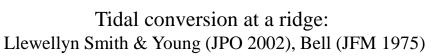
Laboratoire de physique, ENS de Lyon, Lyon. France Institute of Mechanics, Moscow State University, Moscow, Russia Lavrentyev Institute of Hydrodynamics, Novosibirsk, Russia

Motivation



Meridional circulation in the ocean: Wunsch & Ferrari (Annu. Rev. Fluid Mech. 2004)





-500 -1000 -1500--2000 -2500 -3000 -3500 -4000 -4500 -5000 -5500 -6000 -30 -28 -26 -24 -22 -20 -18 -16 Longitude 0.2 0.3 0.4 0.5 0.6 0.7 0.8 2.0 5.0 8.0 22.0 Diffusivity (10-4 m²s⁻¹)

Diapycnal diffusivity in Brazil Basin: Polzin *et al.* (Science 1997)

Dispersion relation

$$N(z) = \left[-(g/\rho)d\rho/dz\right]^{1/2}$$

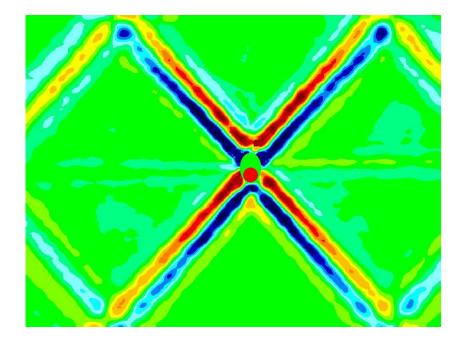
Buoyancy frequency

$$\Omega = \omega / N$$

Forcing frequency

$$\Omega = \frac{\omega}{N} = \pm \sin \theta$$

Dispersion relation



Internal waves emitted by oscillations of a circular cylinder (color shows density gradient perturbations)

Geometric focusing

$$N(z) = \left[-(g/\rho)d\rho/dz\right]^{1/2}$$

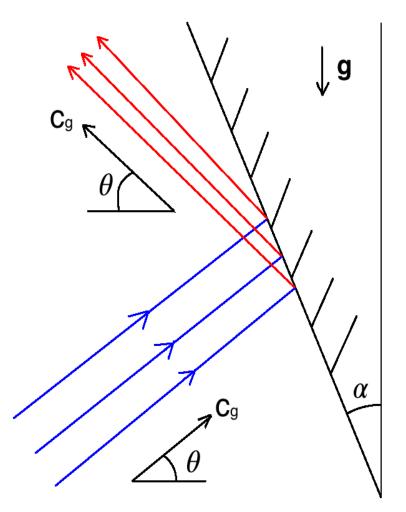
Buoyancy frequency

$$\Omega = \omega/N$$

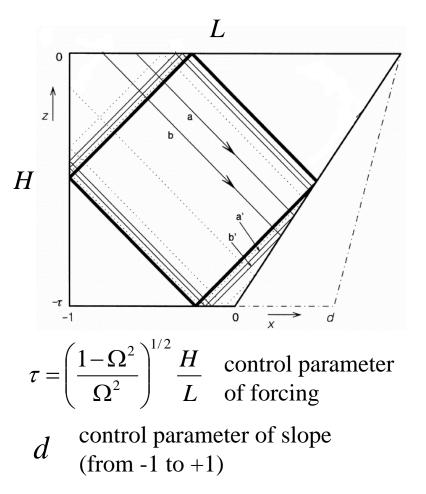
Forcing frequency

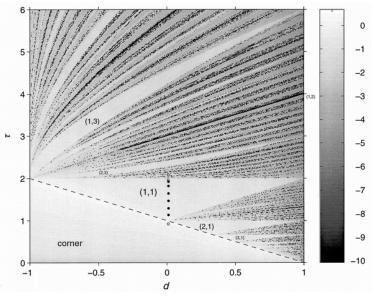
$$\Omega = \frac{\omega}{N} = \pm \sin \theta$$

Dispersion relation



Formation of attractors in a basin with a slope



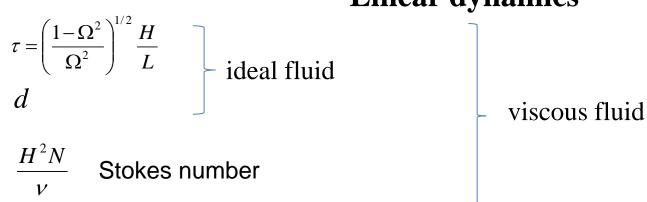


 $(d,\,\tau)$ - diagram of regimes

Grey scale shows the value of Lyapunov exponents

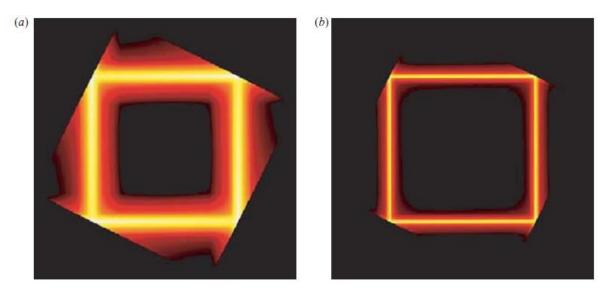
Maas & Lam (JFM 1995) Maas, Benielli, Sommeria & Lam (Nature1997)

Attractor in viscous stratified fluid Linear dynamics



Key mechanism:

Geometric focusing *versus* viscous broadening = equilibrium width of attractor beams

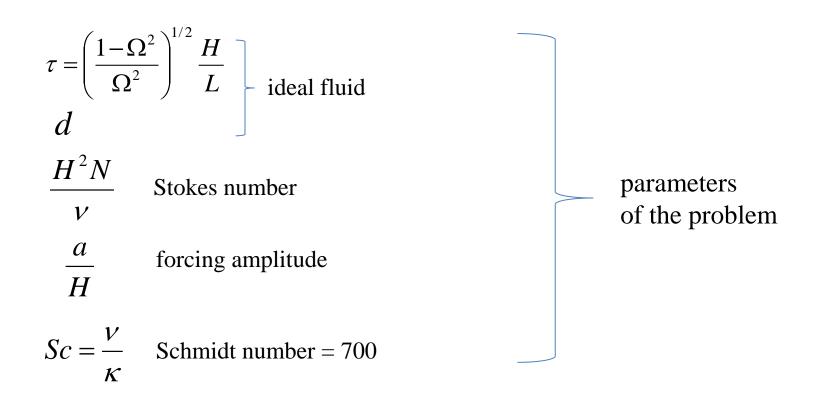


Ogilvie (JFM 2005) Hazewinkel, van Breevoort, Dalziel & Maas (JFM 2008) Grisouard, Staquet & Pairaud (JFM 2008)

lower Stokes number

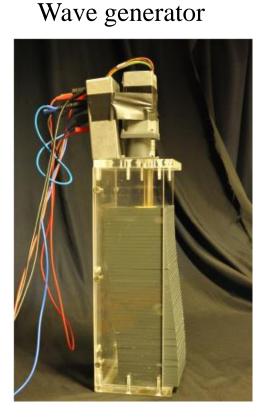
higher Stokes number

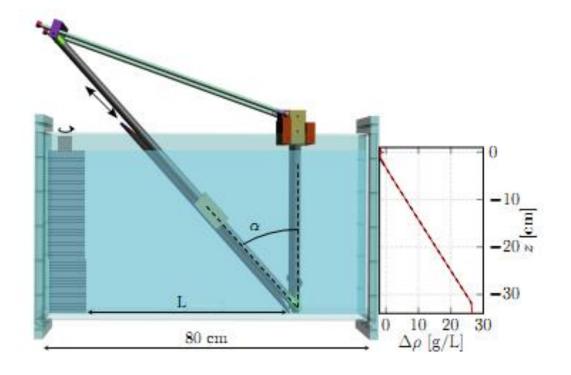
Attractor in viscous fluid with mixing Nonlinear dynamics



Goal: energy cascade in wave attractors

Experimental setup

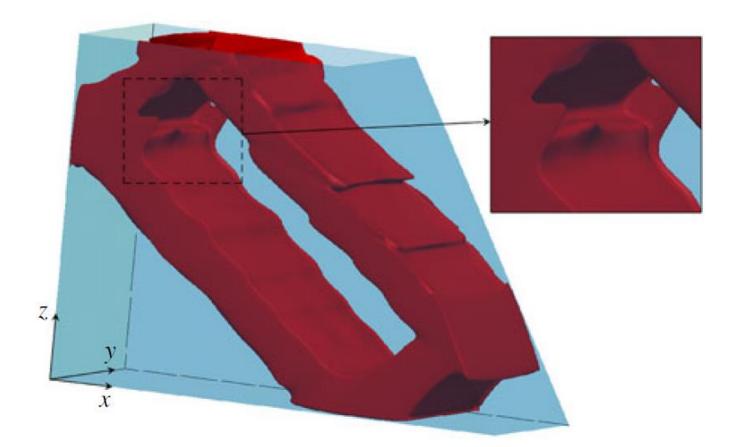




Generator profile: $\eta(z,t) = a \cos(\pi z/H) \cos(\omega_0 t)$

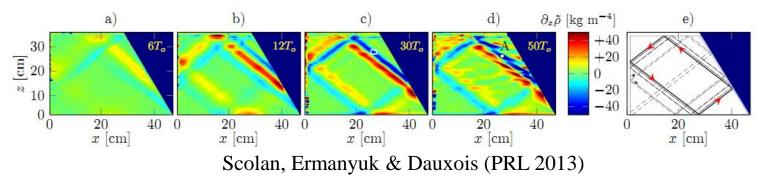
Measuring techniques: Synthetic Schlieren and PIV

Numerical calculations

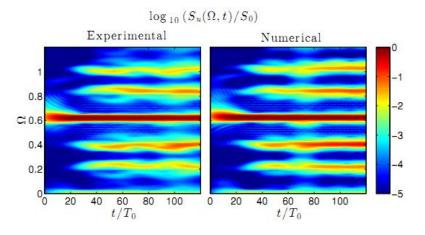


Model: Navier-Stokes in Boussinesq approximation + continuity + salt transportMethod: spectral elements 2D and 3D, code Nek5000 (Fischer & Ronquist 1994)BC: no-slip at rigid walls, stress-free at free surface

Development of triadic resonance



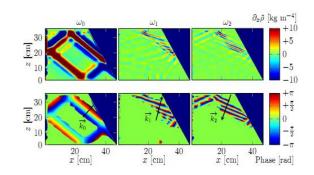
 $\omega_0 = \omega_1 + \omega_2$



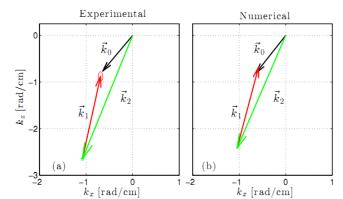
Time-frequency diagram

$$S_r(\omega,t) = \left\langle \left| \int_{-\infty}^{+\infty} v_r(x,z,\tau) e^{i\omega\tau} h(t-\tau) \, d\tau \right|^2 \right\rangle_{xz}$$

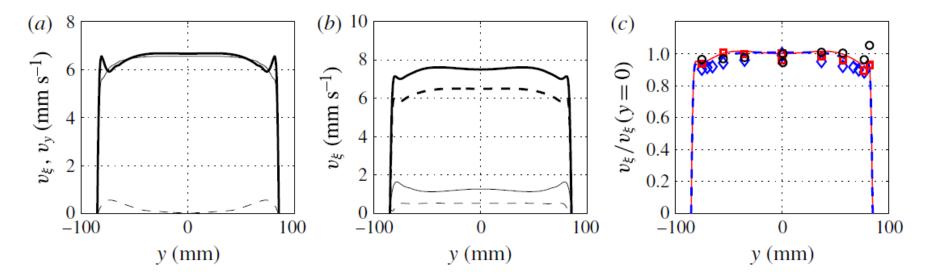
 $\mathbf{k}_0 = \mathbf{k}_1 + \mathbf{k}_2$



Real part and phase of the Hilbert transform for the primary and two secondary waves

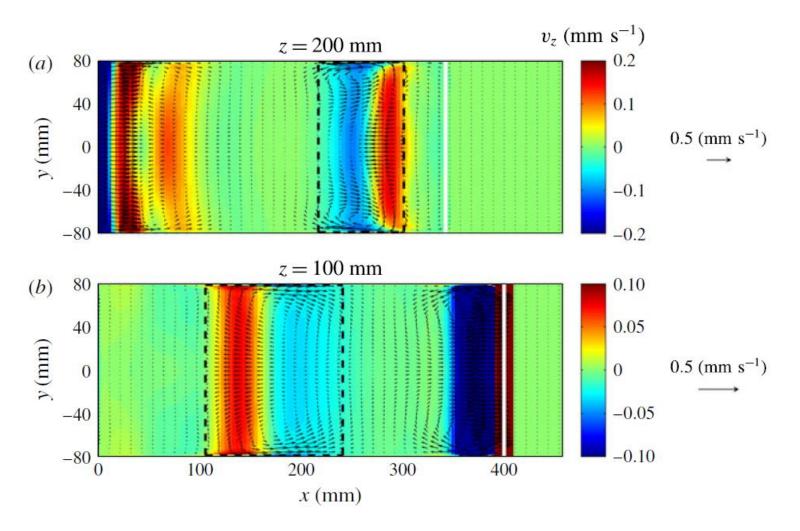


Secondary currents in wave atractors in 3D



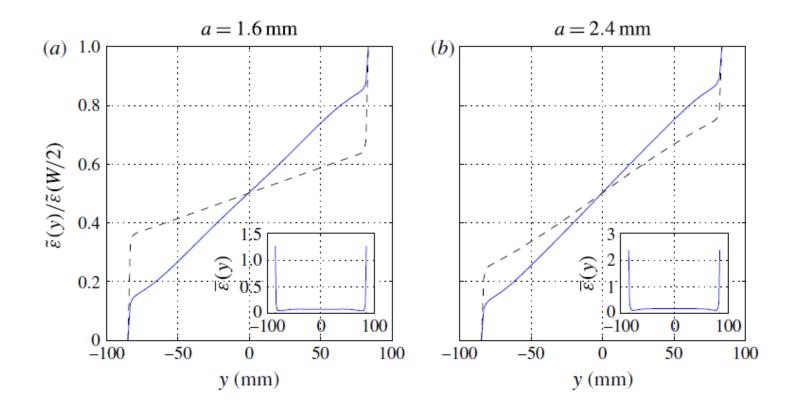
Velocity magnitude in + and – directions along the beam. Dash line – cross-tank direction Velocity amplitude filtered at ω_0 (thick dash line) for the same case as in (a). Velocity amplitudes filtered at ω_0 , ω_1 and ω_2 (thick solid and thin dash & solid lines) Velocity amplitude filtered at ω_0 and normalized by the value at midplane y = 0. Red and blue lines – numerics for a = 1.6 and a = 2.2 mm. Symbols – experiments: diamonds, squares and circles correspond to a = 1.5, 3 and 5 mm

Secondary currents in wave atractors in 3D



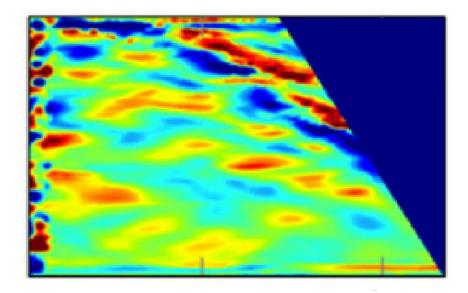
Currents filtered at zero frequency for two horizontal cross-sections of the tank

Dissipation across the tank

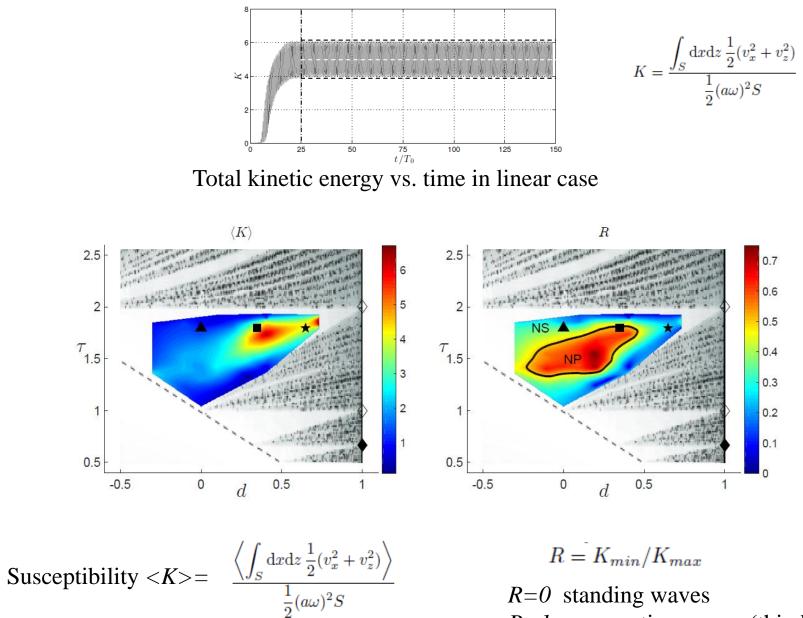


Blue solid line – dissipation in the most energetic beam of the attractor, dash line – dissipation in the middle of the tank

Well-developed instability in a wave attractor. Is this wave turbulence? What is beyond?

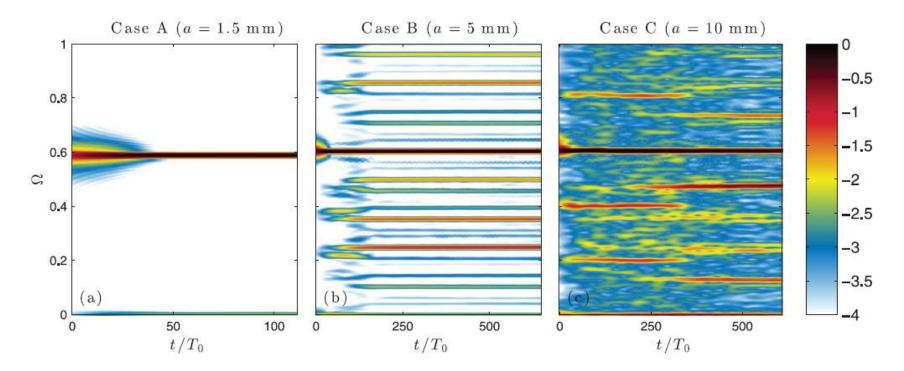


Choice of the operating point at the Arnold tongue



R=1 propagating waves (thin beams)

Cascade of triadic interactions in well-focused attractor (**•**)



Time-frequency diagrams $S_u(\Omega, t) = \left\langle \left| \int_{-\infty}^{+\infty} u(x, z, \tau) e^{i\Omega\tau} h(t - \tau) \, \mathrm{d}\tau \right|^2 \right\rangle_{xz}$

		cm	cm	0	mm	$t_{\rm max}$ T_0
A Exp. B Exp. C Exp.	0.61	30.0 30.3 30.1	45.0 44.4 44.2	27.3 25.4 24.8	1.5 5	149 693 651

Wave turbulence analysis

Method: Yarom & Sharon (Nature Physics 2014)

2D PIV velocity field:
$$u(x, z, t)$$
 and $w(x, z, t)$
3D Fourier transform: $\hat{u}(k_x, k_z, \omega)$ and $\hat{w}(k_x, k_z, \omega)$

Energy spectrum:

Interpolation:

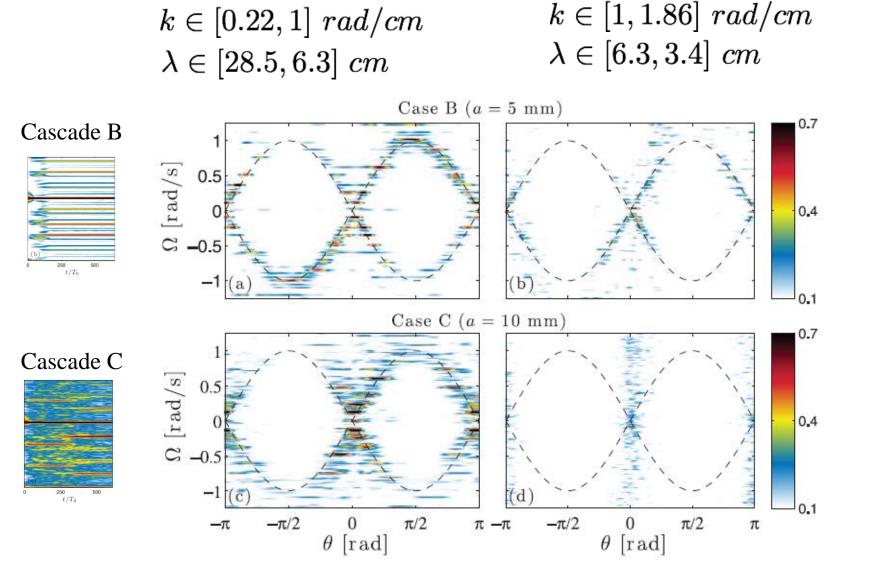
$$E(k_x, k_z, \omega) = \frac{1}{2} \frac{1}{ST} \left(|\hat{u}(k_x, k_z, \omega)|^2 + |\hat{w}(k_x, k_z, \omega)|^2 \right)$$

Dispersion relation: $\Omega = \pm \sin \theta$

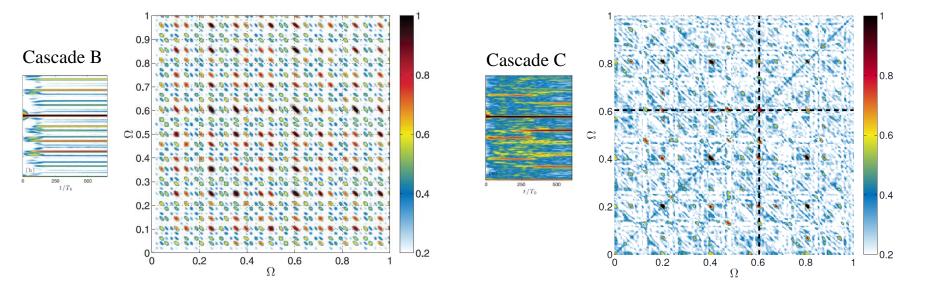
$$E(k_x, k_z, \omega) \longrightarrow E(k, \theta, \omega)$$

Integration: $E(\theta, \omega) = \int_{k_{min}}^{k_{max}} E(k, \theta, \omega) k dk$

Wave turbulence and/or mixing events? Splitting the scales...

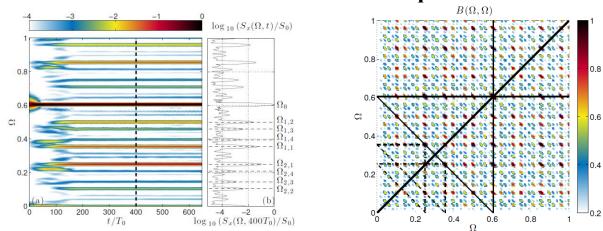


Triadic cascade portrayed by bicoherence

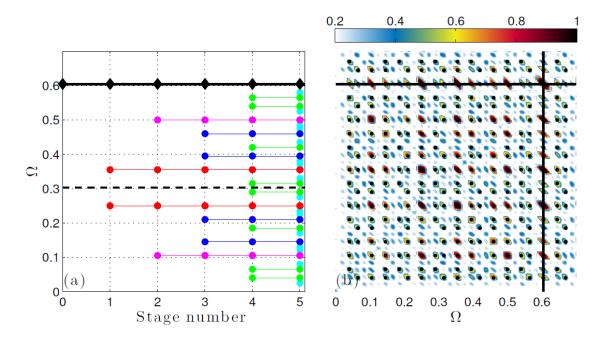


Bispectrum: $M(\Omega_i, \Omega_j) = F(\Omega_i)F(\Omega_j)F^*(\Omega_i + \Omega_j)$

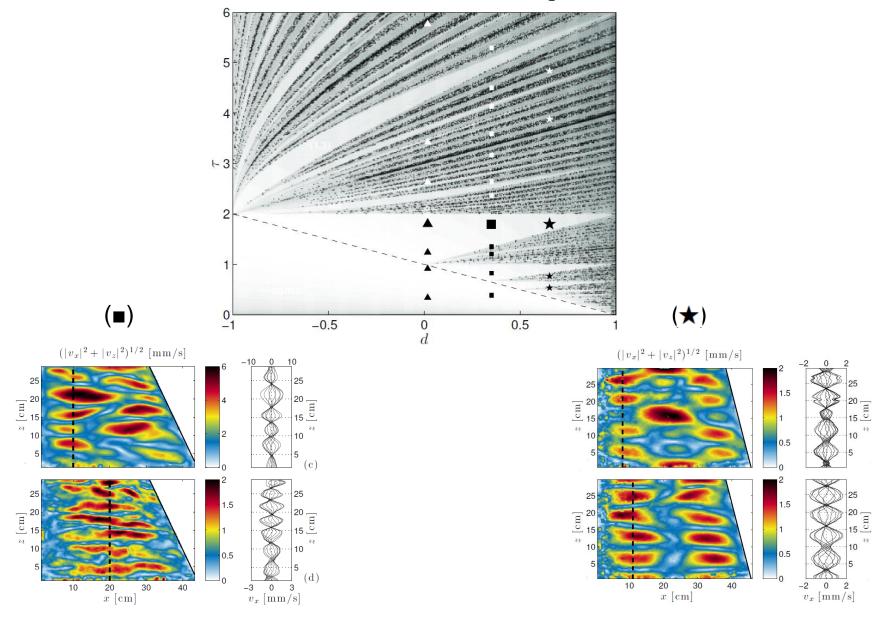
What defines the choice of discrete frequencies in cascade B? "Differential rule..." versus "true and quasi resonances"



Differential rule:



What defines the choice of discrete frequencies in cascade B? "Differential rule..." versus "true and quasi resonances"



Mixing

$$\xi = \frac{\partial w}{\partial x} - \frac{\partial u}{\partial z}$$

Horizontal vorticity:

Gradient Richardson number:

$$Ri = \frac{N^2}{(du/dz)^2}$$

Modified Richardson number:

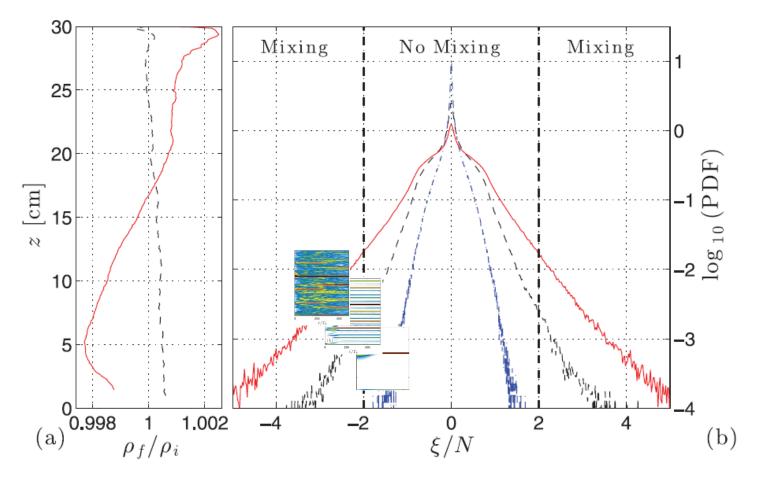
$$Ri_{\xi} = \frac{N^2}{\xi^2}$$

Extension of the Miles-Howard condition

$$Ri > \frac{1}{4}$$

Mixing at
$$Ri_{\xi} < \frac{1}{4} \longrightarrow \left| \frac{\xi}{N} \right| > 2$$

Statistics of mixing events



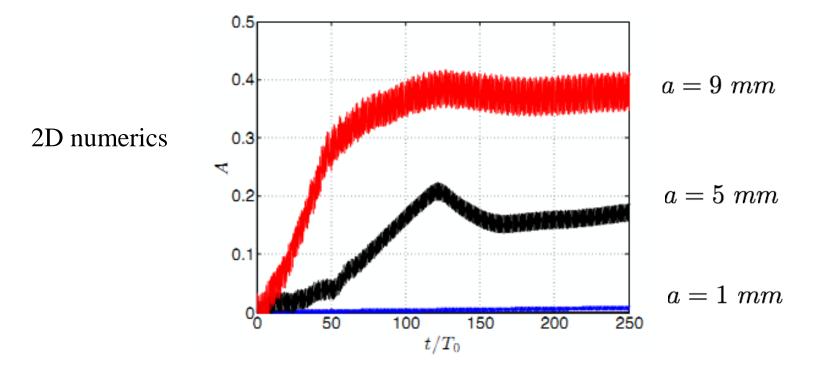
whole-field horizontal vorticity PDF

Mixing

Change of potential energy:

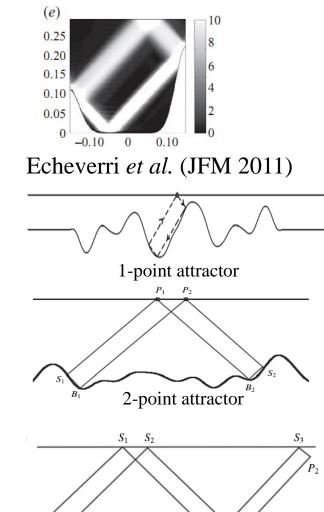
$$A(t) = \frac{(E_p(t) - E_p(0))}{(E_p^* - E_p(0))}$$

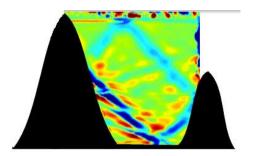
Cascade C: $A \approx 25\%$



Conclusions

Attractors between ridges





Wave attractor as a source of wave turbulence and mixing

Guo & Holmes-Cefron (JFM 2016)

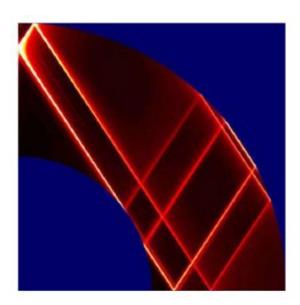
3-point attractor

 B_3

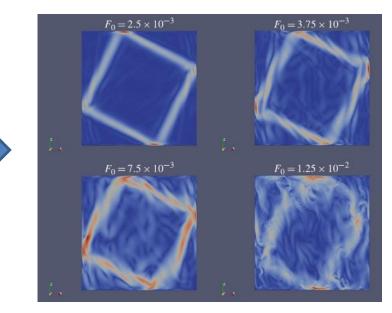
 \check{B}_2

Conclusions

rotating spherical shells



Ogilvie (JFM 2009) Rieutord, Valdettaro, Georgeot, Bariteau... (JFM... 2001-2013)



Jouve & Ogilvie (JFM 2014)

Wave attractor as a source of wave turbulence and mixing

Publications

Scolan H., Ermanyuk E.V., Dauxois T. (2013) Nonlinear fate of internal wave attractors *PRL* **110**, 234501

Brouzet C., Ermanyuk E.V., Joubaud S., Sibgatullin I.N., Dauxois T. (2016) Energy cascade in internal-wave attractors *EPL* **113**, 44001

Brouzet C., Sibgatullin I.N., Scolan H., Ermanyuk E.V., Dauxois T. (2016) Internal wave attractors examined using laboratory experiments and 3D numerical simulations *JFM* **793**, 109-131

Thierry Dauxois

Christophe Brouzet

Sylvain Joubaud

Helene Scolan

Ilias Sibgatulin