On the near wall dissipation
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Introduction

Wall bounded turbulent flow (fully developed turbulent channel flow)

® 0uk
SK =V

Dissipation 12 terms:
ou; N ouy,
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Very hard experimentally =» Local isotropy = Yes or not? If yes where?
Reynolds number dependence (hard both in DNS and experiments)
Fine structure of the dissipation

*Dissipation statistics conditioned by fixed « amplitudes » of the velocity components (/level-

crossing statistics)

Sreenivasan & co-workers =» Contribution to the dissipation is maximum when the velocity goes

locally through zero (stagnation points u=v=w=0, production by definition is zero, dissipation
is maximum) ??

Intermittency and local inertia .. ?



DNS

*Large computational domains as in (Hoyas, Jiménez 2006)

** NS with Dispersion Relation Preserving spatial schemes, See Bauer, Tardu and Doche, Comp. Fluids
2014. Similar to compact schemes but 20% more rapid.

ALL THE QUANTITIES ARE SCALED BY THE INNER VARIABLES, viscosity and wall shear velocity, HEREAFTER

Re. | Re.actual Resolution Ax' Ay’ Az’ I./h I,/h
(N,xN,xN,)

180 178 771x129%x387 8.80 0.49 (0.31n) 5.84 12t 4n
5.59 (1.52 n)

395 396 1691x283x849 8.81 0.48 (0.33n) 5.85 12nt 41
5.57 (1.26n)

590 588 1651x423x1113 8.98 0.48 (0.34n) 5.00 8n 3n
5.56 (1.15n)

1100 1104 3079x789x2075 8.98 0.48(0.34n) 5.00 8mn 3n
5.55 (0.98n)

Simulations parameters in the streamwise, wall normal and spanwise directions (x, y, z). Both
smallest (first line) and largest (second line) grid spacing are given for wall normal direction. The
number in parenthesis is the wall-normal grid spacing scaled by Kolmogorov length 7.



Mean Dissipation and Kolmogorov scale
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Re number dependence constrained to the low buffer and
viscous sublayers: Large-scale, irrotational passive
structures force the flow in the inner layer. The passive
structures remain irrotational but penetrate to the wall
and induce wall parcels of spanwise vorticity.

=>» Effect on the dissipation near the wall since the

former is equal to the enstrophy at the wall.

(Hoyas&Jiménez, 2008).

Large scale
irrotational
structure
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Approximations |

* 12 termsin * 5’uk(é’u-+auk)

i \ox,  ox;

« HOMOGENEOUS, <., =v‘;”)‘cff ‘Zk invariance with respect to
translations and rotations

Ouy ou; 0
> good approximation .
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Approximations Il

*Axisymmetric (Georges et al., 1991) —with respect to the streamwise direction. Two forms (u,v,w

in the streamwise x, wall normal y and spanwise z directions):
. 5(&u)2 (&u)z (av)z 8 (o'?v)z
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* Near wall approximation (Antonia et al, 1991)
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= Zr’r’ (Streamwise Wall shear stress intensity !!!)



Approximations Il

szm /8;; (axisy. 1)
Ex o /€x (axisy.2)

£x Iso ! er (Isotropic)

szw / e}k{ (Near wall)




Conclusions approximations

*The axisymmetric form

7 ? J ? J ? J ?
82ax2=v—ﬂ ) i I | [ ) S A
ox, X, ox; X,

is acceptable through the whole layer.

e One approaches (without exactly reaching) the local isotropy
only in the meso-layer:
y* >100

e |n the viscous layer the spanwise component of enstrophy
dominates.
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CONDITIONAL (Palm) STATISTICS

Determine the ensemble averages of the dissipation conditioned by level
crossings of the velocity components. Palm statistics (DETAILS in Tardu &
Bauer, JoT 2015, Tardu PoF, 2016, Tardu&Bauer 2016).
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Fine structure of the dissipation
Dissipation and zero-crossings

* Main argument advanced so-far (Sreenivasan & coworkers):

Liepmann scale (based on the zero-crossing frequency) is
approximately equal to the Taylor scale (which is correct) =»

2
0 -
f() x (u) X Eiso

At zero-crossings where the local production is exactly zero, it is expected
that the dissipation dominates.

Not sure: *Do not confuse mean dissipation and contribution of zero-
crossings

* Even if this argument reveals to be correct, the contribution can be
dominant only for isotropic part (that is negligible in a large part of the
wall layer)!



Spanwise crossings of the wall normal velocity
dominates the dissipation next to the wall and NOT the
streamwise velocity

* Contribution of the level-crossings to the dissipation in the viscous sublayer y+ =1
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Contribution of u: note that the maxima
are not at [=0 !

Contribution of the wall normal velocity
Maximum at I=0 at 3 times larger than u
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That the mean dissipation is largest at the “stagnation points —
u=v=w=0 that cannot coexist locally (can be shown
theoretically*) is incorrect.

« Mean dissipation (unbiased correct) at u and v crossings ¥~ =1

Streamwise velocity - level crossings
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Wall normal velocity - level crossings
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g, =0 but again large dissipation at large -rare- /7,

LOCAL DISSIPATION DEPENDS ON u, v and w in
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the whole layer . Possible within a structure

of Kolmogorov scalen
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==> Tangential crossings of the shear stress signal u,u ; ==> Asymptotically zero (Ylvisaker 1962)




Contribution of the zero-crossings to the dissipation in the
whole layer = CHANGER CETTE FIGURE
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Wall-normal velocity crossings
dominate the dissipation in the low
buffer layer.

Beyond the buffer layer the
contributions become weaker and
of equal magnitude.




Comments
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The contribution is directly related to the frequency of

the level - crossings

& p Ji,
CE o _l 1
£ f
The frequency of level crossings follows well the Gaussian
relationship :
2 2 2
f f+ =— ¢ 2 = e ?
u;G n—)\’u‘ ﬂ;ou-

1

where 1, is the Taylor scale. The SMALLEST

Taylor scale near the wall is that related to ;ﬁ ()C;Z) :
Z

==> Contribution of zero - crossings of v is largest

| ==> Carrefull for interpretation!!



The interdependence of the local dissipation and the
velocity fluctuations becomes rapidly blurred above the
viscous sublayer




|sotropic zone

If u was Gaussian then u and Z_u would be independent
X

and Z—u would also be Gaussian.
X

2
Eiso = 15\/(9_“
ox

2

- 0 . .
g, =15v % &_u (streamwise level crossings)
X

€ ! Eiso = % (independent of the threshold 7 )
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Intermittency (long tails of the pdf's) even within the meso - layer

(particularly at ¢ , < 0)



Discussion-|

e 1,0, )i = 1)
Dissipation - seen as a random variable - is statistically dependent on u;
- ou; du
Random variable & = &y, =V —~—~&
ox ; ox

==> Conditional joint probability density is such that - dependence- :

That also implies - Correlated -
E(sKui) = E(SK)E(ui) =0

Therefore :
2
E(eKui)=E uié?u_ko"u_k _E ouy duuy 1 duy du, 20
o'?xj &xj &xj o'?xj 2(9xj &xj
or:

E

&xj &xj 2 &xj &xj

AND there 1s NO REASON that should not be the case



Discussion 2

Note the appearence of the anisotropy tensor (seen as a random variable :
_uuy Oj

2K 3
==> The interdependence of the local dissipation is blurred towards the

ik

outer layer wherein the dissipation is well approximated by local isotropy.

BUT E(SKIW u;=4,0, )/;,K = f(fu, ) because u and j_u are STILL dependent.
1 1 l x
(Gaussianity is NEVER reached otherwise recall that one should have :
Eiso,ﬂu _ T
£ 2

which 1s NOT the case.



Main Conclusions

Local isotropy approximation can only be in the meso-layer.

Level-crossing statistics provide a nice way to show that
isotropic turbulence is not Gaussian

The conditional dissipation reaches values as large as 30 times
the local mean at rare intermittent level-crossings in the low
buffer layer.

The interdependence of the local dissipation and the velocity
fluctuations becomes rapidly blurred above the viscous
sublayer and is a function of both intermittency and
anisotropy.



