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Density Stratification, Turbulence,
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TURBULENCE IN STRATIFIED FLUIDS: A REVIEW
E. J. Hopfinger
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Turbulence in stratified fluids: a Review, Hopfinger JGR 1987
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Outline

Introduction

Equilibrium theory for b(z)

Application: computation of mixing efficiency

An out-of-equilibrium model for b(z, t)

Application: entrainment across a density interface
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Introduction

Freely evolving Boussinesq fluid

N =
~— ~—

Ou+(u-Viu = —V¢+ be, (
V.u =0 (

w
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Dynamical invariants: global distribution of buoyancy levels and
total energy if the velocity remains sufficiently smooth.

E = / <;u2 — bz) d>x
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Equilibrium statistical mechanics

Rl Microstate: any field b(x), u(x) satisfying dynamical constraints
Macrostate: p(o, v, x) frequency of occurrence of b=0c and u=v
in the vicinity of x. -

Coarse-graining procedure: b'(x) = [ po'dodv

b(x)

— H A YRy _H -

Similar to Robert-Sommeria-Miller statistical mechanics of 2D turbulence.
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Properties of the equilibria

Equilibrium
theory

v2
p = Ne P7p,(0,z)
eBozty(o)
P = 72(2)
3
B = Ze.

Velocity and buoyancy distributions are independent

The buoyancy distribution depends only on height z.

The velocity distribution is gaussian and spatially
homogeneous, with kinetic energy e..

Local buoyancy fluctuations are also proportional to e..
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Two level configuration

Equilibrium
theory

Buoyancy distribution with two levels £Ab/2 in equal proportion:

1

—b(z)
wby(2)

L
Q‘alll z

. AbH
==

b5 -05
e Ri < 1 the buoyancy field is fully homogenized
e Ri > 1 the buoyancy field is "sorted"”.
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Equilibrium
theory

Mixing efficiency

Out-of
equilibrium

model
Application

Conclusion

Mixing efficiency

H H Hy
Input: bs(z), Eij.
oo -+ - n Assume the system evenly
\ explores phase space
0.2
015 Output: b(z)
" E,[B] - E,[b
0.05 n= M7 Ri =
inj
0 -2 0 2
10 10 10°
Ri

e Complete mixing for Ri < 1: 7y Ri
o Energy equipartition for Ri > 1: 5= 1
e Confirms and generalises McEwan JFM 1983.

AbH

€c
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Relaxation equations

Out-of-
equilibrium
model

atlob = az |:D (azpb -

e B100)

e Converges towards the equilibrium state.
o Satisfies basic conservation laws of the original system.

e Model turbulent transport and restratification.
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Dynamical model
Out-of-
equciili?rium 3 el/2
model R C
81.‘pb = 8Z |:D (8zpb - > ((7 - b) pb):| + 7Dmix[pb] .
€c /\b

e Dissipation operator D,,;, conserves the norm and the mean
value of pj at each height z.

e Turbulent diffusion D = /bei/?

e Dynamical equation for e.(z, t).

In the following, we assume to simplify e. = cst, I, = cst, A, = cst.
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Application to a forced-dissipated
Equibriun configuration

theory

uilibrium . .
B Buoyancy prescribed at upper and lower boundaries

Application

Con on 1 1
Conclusio b(H) = 2 b(—H) = )
Parameters
b= ec ' Noby

v 3 -
1 RiY28pp = 8, |0, pp — ERI' (o —b) pb| + €Drmix[ps) -
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J. Fluid Mech. (1982), vol. 114, pp. 157-173 1587
Printed in Great Britain

Formation of thermoclines in zero-mean-shear turbulence
subjected to a stabilizing buoyancy flux

By E. J. HOPFINGERY AND P. F. LINDEN

Application Department of Applied Mathematics and Theoretical Physics, University of Cambridge

(Received 13 February 1981)

Parameters
* Iy Ri HAb H?
= — | = _
b H ’ €c ’ ¢ /\b/b

/ 3 _
I RiY20epp = 0, |D2pp — ER" (o = b) pb| + €Dmix[ps] -
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Closure with 3 buoyancy levels

1 1 - 1
be{_2a07+2}7 b_i(p‘F_p*)

Application /27 Ril//’zatp+ = 8zzp+ + 2 RI |:( ) :| B
¥ prl/2 3
[y RIY“0ip— = Opzp— — 5/?/8 {( ) p] —€pyp—.

Three-layer closure

Ri>1, ex1

) . Spontaneous emergence of a
T sharp interface

05 B —6.5

Note: a Gaussian closure for pj leads to [Mellor Yamada1978]:-no interface.
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Entrainment across the interface
Mean buoyancy flux

Ob+0,dp, =0, Jp=—lpel/? <6Zb — gRib’2>

Application

Entrainment velocity

Ue

Three-layer closure

Creation of intermediate
buoyancy levels within the
interface (thickness H/R/) at a
rate e/2/\,.

_L H g
6 Rily

Ue
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J. Fluid Mech. (1986), vol. 166, pp. 227-244 227
Printed in Great Britain

On mixing across an interface in

stably stratified fluid
By XUEQUAN Et AnD E. J. HOPFINGER
Institut de Mécanique, Université de G ble et C.N.R.S., G ble, France

Application
(Received 19 March 1985 and in revised form 3 December 1985)

o E & Hopfinger 1986 report an interface thickness oc Ri~! and an
entrainment velocity o Ri—3/2

e The model based on a statistical mechanics approach predicts an
tanh shape for the buoyancy profile, with thickness H/Ri, and
an entrainment velocity

_1 H ap
6 RI'/\b ¢

Ue

e Assuming A, o Ri'/? is consistent with Linden 1973
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Conclusion

Summary

Equilibrium theory for a Boussinesq fluid:
Quantitative predictions for mixing efficiency.

Relaxation equations towards the equilibrium state:
A reduced 1D model satisfying essential conservation laws of 3D
Boussinesq equations.

A hierarchy of subgrid-scale models can then be derived,
including the effect of forcing and dissipation.

Describes a competition between turbulent transport,
restratification, and irreversible mixing.

We assumed homogeneous isotropic kinetic energy in the
domain bulk to study salient features of the model
However, anisotropy and inhomogeneity can be taken into
account in this framework.

Venaille Gostiaux Sommeria, preprint
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