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Density Stratification, Turbulence,
but How Much Mixing?

Ivey Winters Koseff 2008

• Global Richardson or Froude number

Ri =
H∆b

U2
=

1

Fr2

• Buoyancy field

b(x, t) = g
%0 − %(x, t)

%0

• Objective: a model for b(z , t)

• Here: a statistical mechanics approach
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Turbulence in stratified fluids: a Review, Hopfinger JGR 1987

• Global Richardson or Froude number

Ri =
H∆b

U2
=

1

Fr2

• Buoyancy field

b(x, t) = g
%0 − %(x, t)

%0

• Objective: a model for b(z , t)

• Here: a statistical mechanics approach



A. Venaille

Introduction

Equilibrium
theory

Mixing efficiency

Out-of-
equilibrium
model

Application

Conclusion

Density Stratification, Turbulence,
but How Much Mixing?

Ivey Winters Koseff 2008

• Global Richardson or Froude number

Ri =
H∆b

U2
=

1

Fr2

• Buoyancy field

b(x, t) = g
%0 − %(x, t)

%0

• Objective: a model for b(z , t)

• Here: a statistical mechanics approach



A. Venaille

Introduction

Equilibrium
theory

Mixing efficiency

Out-of-
equilibrium
model

Application

Conclusion

Outline

• Equilibrium theory for b(z)

• Application: computation of mixing efficiency

• An out-of-equilibrium model for b(z , t)

• Application: entrainment across a density interface
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Freely evolving Boussinesq fluid

∂tu + (u · ∇) u = −∇φ+ bez (1)

∂tb + (u · ∇) b = 0 (2)

∇ · u = 0 (3)

Dynamical invariants: global distribution of buoyancy levels and
total energy if the velocity remains sufficiently smooth.

E =

∫ (
1

2
u2 − bz

)
d3x
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Equilibrium statistical mechanics

Microstate: any field b(x),u(x) satisfying dynamical constraints
Macrostate: ρ(σ, v, x) frequency of occurrence of b = σ and u = v
in the vicinity of x.
Coarse-graining procedure: bi (x) =

∫
ρσidσdv

x

z

b(x)

H

−H x

z

b(x)
H

−H

Similar to Robert-Sommeria-Miller statistical mechanics of 2D turbulence.
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Properties of the equilibria

ρ = Ne−β
v2

2 ρb(σ, z)

ρb =
eβσz+γ(σ)

Z(z)
(4)

β =
3

2ec

• Velocity and buoyancy distributions are independent

• The buoyancy distribution depends only on height z .

• The velocity distribution is gaussian and spatially
homogeneous, with kinetic energy ec .

• Local buoyancy fluctuations are also proportional to ec .
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Two level configuration

Buoyancy distribution with two levels ±∆b/2 in equal proportion:

0.5 −0.5
−1

1

z

 

 

b(z)
bs(z)
1

2
tanh

(

3Ri

4
z

)

Ri =
∆bH

ec
.

• Ri � 1 the buoyancy field is fully homogenized

• Ri � 1 the buoyancy field is ”sorted”.
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Mixing efficiency

10
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η

H

−H

H

−H

H

−H

Input: bs(z),Einj .

Assume the system evenly
explores phase space

Output: b(z)

η ≡ Ep[b]− Ep[bs ]

Einj
, Ri =

∆bH

ec

• Complete mixing for Ri � 1: η ∝ Ri

• Energy equipartition for Ri � 1: η = 1
4

• Confirms and generalises McEwan JFM 1983.
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Relaxation equations

∂tρb = ∂z

[
D

(
∂zρb −

3

2ec

(
σ − b

)
ρb

)]
.

• Converges towards the equilibrium state.

• Satisfies basic conservation laws of the original system.

• Model turbulent transport and restratification.
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Dynamical model

∂tρb = ∂z

[
D

(
∂zρb −

3

2ec

(
σ − b

)
ρb

)]
+

e
1/2
c

Λb
Dmix [ρb] .

• Dissipation operator Dmix conserves the norm and the mean
value of ρb at each height z .

• Turbulent diffusion D = lbe
1/2
c .

• Dynamical equation for ec(z , t).

In the following, we assume to simplify ec = cst, lb = cst, Λb = cst.
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Application to a forced-dissipated
configuration

Buoyancy prescribed at upper and lower boundaries

b (H) =
1

2
, b (−H) = −1

2

Parameters

l∗b =
lb
H
, Ri =

H∆b

ec
, ε =

H2

Λb lb

l∗bRi
1/2∂tρb = ∂z

[
∂zρb −

3

2
Ri
(
σ − b

)
ρb

]
+ εDmix [ρb] .
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Parameters

l∗b =
lb
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Closure with 3 buoyancy levels

b ∈
{
−1

2
, 0,+

1

2

}
, b =

1

2
(p+ − p−)

l∗bRi
1/2∂tp+ = ∂zzp+ +

3

2
Ri∂z

[(
1

2
− b

)
p+

]
− εp+p−.

l∗bRi
1/2∂tp− = ∂zzp− −

3

2
Ri∂z

[(
1

2
+ b

)
p−

]
− εp+p−.

0.5 −0.5
−1

1

b∗

z
∗

Three-layer closure

 

 

t
∗ = 0
t
∗ = 0.1
t
∗ = 10
t
∗ = 103

t
∗ = 106

1

2
tanh

(

3Ri

4
z
∗

)

Ri � 1, ε� 1

Spontaneous emergence of a
sharp interface

Note: a Gaussian closure for ρb leads to [Mellor Yamada 1978]: no interface.
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Entrainment across the interface
Mean buoyancy flux

∂tb + ∂zJb = 0, Jb ≡ −lbe1/2
c

(
∂zb −

3

2
Rib′2

)
Entrainment velocity

ue ≡
−Jb
∆b

0.5 −0.5
−1

1

b∗

z
∗

Three-layer closure

 

 

t
∗ = 0
t
∗ = 0.1
t
∗ = 10
t
∗ = 103

t
∗ = 106

1

2
tanh

(

3Ri

4
z
∗

)

Creation of intermediate
buoyancy levels within the
interface (thickness H/Ri) at a
rate e1/2/Λb.

ue =
1

6

H

RiΛb
e1/2
c
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• E & Hopfinger 1986 report an interface thickness ∝ Ri−1 and an
entrainment velocity ∝ Ri−3/2

• The model based on a statistical mechanics approach predicts an
tanh shape for the buoyancy profile, with thickness H/Ri , and
an entrainment velocity

ue =
1

6

H

RiΛb
e1/2
c

• Assuming Λb ∝ Ri1/2 is consistent with Linden 1973
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Summary

• Equilibrium theory for a Boussinesq fluid:
Quantitative predictions for mixing efficiency.

• Relaxation equations towards the equilibrium state:
A reduced 1D model satisfying essential conservation laws of 3D
Boussinesq equations.

• A hierarchy of subgrid-scale models can then be derived,
including the effect of forcing and dissipation.
Describes a competition between turbulent transport,
restratification, and irreversible mixing.

• We assumed homogeneous isotropic kinetic energy in the
domain bulk to study salient features of the model
However, anisotropy and inhomogeneity can be taken into
account in this framework.

Venaille Gostiaux Sommeria, preprint
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